

2175 Cherry Avenue • Signal Hill, California 90755-3799

THE CITY OF SIGNAL HILL WELCOMES YOU TO A SPECIAL HOUSING AUTHORITY MEETING November 13, 2025

The City of Signal Hill appreciates your attendance. Citizen interest provides the Authority with valuable information regarding issues of the community. This meeting will begin at 6:00 pm. There is a public comment period at the beginning of the meeting. Any person wishing to comment shall be allotted three minutes per distinct item. Any meeting may be adjourned to a time and place stated in the order of adjournment.

The agenda is posted 72 hours prior to each meeting on the City's website and outside of City Hall. The agenda and related reports are also available for review online at www.cityofsignalhill.org.

To participate:

- In-person Participation: Council Chamber of City Hall, 2175 Cherry Avenue, Signal Hill, California.
- To make a general public comment or comment on a specific agenda item, you may also submit your comment, limited to 250 words or less, to the City Clerk at cityclerk@cityofsignalhill.org not later than 4:00 p.m. on Thursday, November 13, 2025. Written comments will be provided electronically to the Authority and attached to the meeting minutes. Written comments will not be read into the record.

Housing Authority Members receive no compensation.

(1) <u>CALL TO ORDER – 6:00 P.M.</u>

(2) ROLL CALL

CHAIR JONES
VICE CHAIR HANSEN
MEMBER COPELAND
MEMBER HONEYCUTT
MEMBER WOODS

(3) PUBLIC BUSINESS FROM THE FLOOR ON ITEMS NOT LISTED ON THE AGENDA (SPEAKERS WILL BE GIVEN THREE MINUTES FOR EACH DISTINCT ITEM)

(4) EXECUTIVE DIRECTOR REPORT

 PROPOSED AMENDMENT TO THE EXCLUSIVE NEGOTIATION AGREEMENT WITH NATIONAL COMMUNITY RENAISSANCE OF CALIFORNIA (NATIONAL CORE)

Summary:

Staff has negotiated and is presenting revised terms of an Exclusive Negotiation Agreement (ENA) by and between the City, Housing Authority, and National Community Renaissance of California, a California nonprofit public benefit corporation (National CORE). The Orange Bluff ENA expires on November 15, 2025, and supports efforts to develop the Orange Bluff Affordable Housing Projects. The ENA for the Walnut Bluff Project has been satisfied. The Walnut Bluff project is located on a two-acre property at the northwest corner of East Willow Street and Walnut Avenue, consisting of approximately 83 affordable homes for individuals and families earning below 80% of the area median income (AMI). The Orange Bluff Project is located on an 8.6-acre property on the south side of East 28th Street, between Orange Avenue and Gundry Avenue, and consists of approximately 297 affordable homes.

Since the original ENA was negotiated, National CORE has experienced significant impacts from a changing financial environment due to changing funding priorities at the State level. In response, National CORE is pursuing funding through the Affordable Housing and Sustainable Communities (AHSC) program, funded by the Greenhouse Gas Reduction Fund. The AHSC program prioritizes larger, denser projects that promote greenhouse gas reductions through sustainable design, location efficiency, and transit connectivity. To strengthen its competitiveness for AHSC funding, National CORE is now evaluating a scattered-sites approach, which could include both the Orange Bluff and Walnut Bluff sites and a third alternative public or privately owned site.

Staff recommends the City Council and Housing Authority Board approve the proposed ENA between the City of Signal Hill, the Signal Hill Housing Authority, and National CORE substantially in the form presented, for the development of the Orange Bluff Workforce Housing project and the 28th & Walnut or Alternative Site. Staff further recommends extending the ENA deadline to September 15, 2027 for the Orange Bluff Project and July 15, 2026 for the 28th & Walnut or Alternative Site. In addition, staff has identified a need to amend the ENA to include language that allows for the identification and consideration of an alternative site, either publicly or privately owned, should the originally proposed site not be available or feasible for development.

Strategic Plan Goal(s):

Goal No. 1 Financial Stability: Ensure the City's long-term financial stability and resilience.

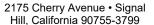
- Goal No. 3 Economic Development: Improve the local economy, support local businesses, and create a vibrant downtown core.
- Goal No. 4 Infrastructure: Maintain and improve the City's physical infrastructure, water system, and recreational spaces.

Recommendation(s):

Staff recommends the City Council and Housing Authority Board approve the proposed amendments to the Exclusive Negotiation Agreement (ENA) between the City of Signal Hill, the Signal Hill Housing Authority, and National Community Renaissance (National CORE) substantially in the form presented for the development of two proposed workforce housing projects known as Orange Bluff and an alternative potential site as follows:

- 1. Approve the revised ENA between the City of Signal Hill, the Signal Hill Housing Authority, and National CORE, extending the ENA deadlines to September 15, 2027 for the Orange Bluff Project and July 15, 2026 for 28th & Walnut or Alternative Site.
- 2. Authorize the City Manager to effectuate all documents related to this action.

(5) HOUSING AUTHORITY AGENDA--NEW BUSINESS


MEMBER WOODS
MEMBER HONEYCUTT
MEMBER COPELAND
VICE CHAIR HANSEN
CHAIR JONES

(6) ADJOURNMENT

The next regular meeting of the Signal Hill Housing Authority will be held on Tuesday, January 13, 2026, at 7:00 p.m., in the Community Room of the Signal Hill Public Library, 1800 E. Hill Street, Signal Hill, CA 90755. Special meetings will be held as needed to conduct Authority business.

PUBLIC PARTICIPATION

If you need special assistance beyond what is normally provided to participate in City meetings, the City will attempt to accommodate you in every reasonable manner. Please call the City Clerk's office at (562) 989-7305 at least 48 hours prior to the meeting to inform us of your particular needs and to determine if accommodation is feasible.

CITY OF SIGNAL HILL STAFF REPORT

11/13/2025

AGENDA ITEM

TO: HONORABLE MAYOR

AND MEMBERS OF THE CITY COUNCIL

HONORABLE CHAIR

AND MEMBERS OF THE HOUSING AUTHORITY

FROM: CARLO TOMAINO

CITY MANAGER

BY: ALFA LOPEZ

ASSISTANT TO THE CITY MANAGER/ ECONOMIC DEVELOPMENT MANAGER

SUBJECT:

PROPOSED AMENDMENT TO THE EXCLUSIVE NEGOTIATION AGREEMENT WITH NATIONAL COMMUNITY RENAISSANCE OF CALIFORNIA (NATIONAL

CORE)

Summary:

Staff has negotiated and is presenting revised terms of an Exclusive Negotiation Agreement (ENA) by and between the City, Housing Authority, and National Community Renaissance of California, a California nonprofit public benefit corporation (National CORE). The Orange Bluff ENA expires on November 15, 2025, and supports efforts to develop the Orange Bluff Affordable Housing Projects. The ENA for the Walnut Bluff Project has been satisfied. The Walnut Bluff project is located on a two-acre property at the northwest corner of East Willow Street and Walnut Avenue, consisting of approximately 83 affordable homes for individuals and families earning below 80% of the area median income (AMI). The Orange Bluff Project is located on an 8.6-acre property on the south side of East 28th Street, between Orange Avenue and Gundry Avenue, and consists of approximately 297 affordable homes.

Since the original ENA was negotiated, National CORE has experienced significant impacts from a changing financial environment due to changing funding priorities at the State level. In response, National CORE is pursuing funding through the Affordable Housing and Sustainable Communities (AHSC) program, funded by the Greenhouse Gas Reduction Fund. The AHSC program prioritizes larger, denser projects that promote greenhouse gas reductions through sustainable design, location efficiency, and transit connectivity. To strengthen its competitiveness for AHSC funding, National CORE is now evaluating a scattered-sites approach, which could include both the Orange Bluff and Walnut Bluff sites and a third alternative public or privately owned site.

11/13/2025

Staff recommends the City Council and Housing Authority Board approve the proposed ENA between the City of Signal Hill, the Signal Hill Housing Authority, and National CORE substantially in the form presented, for the development of the Orange Bluff Workforce Housing project and the 28th & Walnut or Alternative Site. Staff further recommends extending the ENA deadline to September 15, 2027 for the Orange Bluff Project and July 15, 2026 for the 28th & Walnut or Alternative Site. In addition, staff has identified a need to amend the ENA to include language that allows for the identification and consideration of an alternative site, either publicly or privately owned, should the originally proposed site not be available or feasible for development.

Strategic Plan Goal(s):

- Goal No. 1 Financial Stability: Ensure the City's long-term financial stability and resilience.
- Goal No. 3 Economic Development: Improve the local economy, support local businesses, and create a vibrant downtown core.
- Goal No. 4 Infrastructure: Maintain and improve the City's physical infrastructure, water system, and recreational spaces.

Recommendation(s):

Staff recommends the City Council and Housing Authority Board approve the proposed amendments to the Exclusive Negotiation Agreement (ENA) between the City of Signal Hill, the Signal Hill Housing Authority, and National Community Renaissance (National CORE) substantially in the form presented for the development of two proposed workforce housing projects known as Orange Bluff and an alternative potential site as follows:

- Approve the revised ENA between the City of Signal Hill, the Signal Hill Housing Authority, and National CORE, extending the ENA deadlines to September 15, 2027 for the Orange Bluff Project and July 15, 2026 for 28th & Walnut or Alternative Site.
- 2. Authorize the City Manager to effectuate all documents related to this action.

Fiscal Impact:

There is no fiscal impact associated with amending the Exclusive Negotiation Agreement with National CORE.

Background:

The City's Certified Housing Element identifies two sites owned by Signal Hill Petroleum (SHP) for future development of workforce housing. Orange Bluff is an 8.6-acre property located on the south side of East 28th Street between Orange Avenue and Gundry Avenue. Walnut Bluff is a 2-acre property located at the northwest corner of East Willow Street and Walnut Avenue. The City Council entitled both sites to accommodate 85 units of workforce housing on Walnut Bluff and 297 units on Orange Bluff. Developing these sites helps the City provide new affordable housing opportunities and meet its Regional Housing Needs Assessment (RHNA) allocation for the current Housing Element

5

11/13/2025

cycle, totaling 517 units.

The City Council and Housing Authority Board approved the selection of National CORE through a Notice of Funding Availability. In April 2024, the City Council authorized the City Manager to execute an ENA with National CORE. The ENA committed available and future City and Housing Authority funding and set performance milestones aligned with the City's desired development timeline. Both workforce housing sites contain active and abandoned oil wells. As both the property owner and development partner, Signal Hill Petroleum has provided technical expertise throughout this process.

During site evaluations, National CORE and SHP determined the Orange Bluff property presents significantly more complex and costly remediation challenges than initially anticipated. As a result, National CORE requires additional time to complete its due diligence and assess the financial feasibility of the Orange Bluff site as an income-restricted residential project. Due to the expected delays with the Orange Bluff project, the City Manager, under his authority, revised the ENA, separating it into two schedules to allow both projects to move forward. The ENA outlines a specific timeframe for National CORE to meet its performance requirements. National CORE has made significant progress in its due diligence for the Walnut Bluff site and negotiated site control with Signal Hill Petroleum, recently executing a Letter of Intent for site acquisition.

The City Council and Housing Authority subsequently approved an Affordable Housing Agreement with National CORE for the development of the Walnut Bluff property. The Walnut Bluff Workforce Housing Project, including the acquisition, development, and remediation costs, totals \$51,515,329. The City's loan, in the amount of \$6,550,000, funds the financing gap for this project. National CORE has continued implementing the performance schedule outlined in the Affordable Housing Agreement and is securing additional sources of funding that comprise the capital stack for this project.

Analysis:

Since executing the ENA, there have been challenges associated with the two project sites outside the control of the City, National CORE, and SHP. First, due to the State budget's multibillion-dollar operating deficit, the State Legislature and Governor temporarily suspended funding for programs such as the Infill Infrastructure Grant (IIG) and other affordable housing initiatives. National CORE identified the IIG program, in particular, as a possible source of funding for infrastructure improvements; National CORE continues advocating for the reinstatement of these funds. As further discussed below, the State has also reprioritized the use existing affordable housing funding for permanent supportive housing. The current funding landscape means that there is a significantly diminished pool of State money available for affordable housing developers which makes funding applications much more competitive.

Walnut Bluff Workforce Housing Project

National CORE successfully negotiated with SHP to acquire the property; the two parties are now finalizing the terms and conditions of a Purchase and Sale Agreement. In order to make the project financing feasible for this site, SHP discounted the value of the property by 50%, which enabled the two parties to advance negotiations. National CORE also made significant progress designing the site layout, which is comprised of 86 units, and a Boys and Girls Club. The total cost of the project, including acquisition, development, and remediation, is \$51,515,329. The City Council previously authorized a loan totaling \$6,550,000 to close the financing gap.

National CORE also completed its site analysis, which included further study of environmental conditions due to a recent change in State law regarding oil operations and health protection zones. National CORE and SHP prepared a supplemental Human Health Risk Assessment (HHRA) to determine that the Walnut Bluff safe is suitable for residential development. SHP and National CORE were very diligent in ensuring the oil activity with proximity to the proposed Walnut Bluff development would not create health risks for future residents. The HHRA concluded that the proximity to previous and current oil operations does not pose a health risk to future residents. Staff has attached the HHRA for the City Council's information (Attachment A).

Orange Bluff Workforce Housing Project

The Orange Bluff property is approximately 8.6 acres, which is generally much larger than the average affordable housing site which is typically two to three acres. The property's size makes site acquisition and development much more costly, even at a discounted price, for an affordable housing developer. The Orange Bluff property also contains oil wells and requires soil remediation, which will add to its development cost. In summary, while the Orange Bluff site can be developed as a future housing site, developing the entire property as an affordable housing site is cost prohibitive and the property is better suited as a potential market rate development with two acres set aside for an affordable multifamily project. This potential change would increase the opportunities to develop the property by relying more on private equity investment than on competitive and limited State funding opportunities. National CORE and SHP would jointly pursue market rate development partners for this property and report back to the City Council.

Affordable Housing and Sustainable Communities Program

As noted previously, one of the most significant challenges to developing the two workforce housing sites is that the State of California has substantially reduced funding availability for affordable housing projects. In other instances, the State has reprioritized its available affordable housing funding for permanent supportive housing projects that supports that State's initiatives to reduce homeless population. National CORE identified an alternative source of funding called the AHSC program, that could potentially fill the funding gap left by the Infill Infrastructure Grant program.

The AHSC Program links the development of affordable housing with investments in sustainable transportation infrastructure to address climate change and housing affordability simultaneously. Funded by California's Cap-and-Trade program through California Climate Investments, the AHSC program is administered jointly by the Strategic Growth Council and the Department of Housing and Community Development. The goal of the AHSC program is to reduce greenhouse gas emissions by decreasing vehicle miles traveled, also known as VMT, by integrating communities within proximity to jobs and essential services. AHSC also provides grants and loans for affordable housing, the development of new bike lanes, sidewalks, transit stops, and urban greening efforts.

Since 2015, the AHSC program has invested more than \$4 billion, funding over 200 projects statewide. This investment has resulted in the creation of over 20,000 new affordable homes and is projected to avoid an estimated 5.7 million metric tons of GHG emissions. Over half of these investments have directly benefited disadvantaged communities, promoted environmental equity and provided significant financial relief to households through reduced transportation and housing costs. The program requires collaboration between housing developers, local governments, and transit agencies, representing a comprehensive, multi-sector approach to building healthier, more sustainable, and equitable communities across California.

Proposed Approach using AHSC Funding

To advance development of the City's workforce housing projects, National CORE proposes leveraging the AHSC funding source and applying for funding based on the scattered site model. As noted, the Orange Bluff site requires a significantly higher capital investment compared to available State funding; therefore, the Orange Bluff site is not likely suitable as part of the AHSC funding application. The proposed approach would require National CORE to apply for funding for the Walnut Bluff property and an alternative site discussed below, both of which National CORE believes are financially feasible based on current funding availability and market conditions.

Potential Alternative Sites:

As discussed above, there have been challenges associated with the availability of State funding for workforce housing projects. The primary purpose of the proposed item this evening is to recommend extending the ENA to allow National CORE time to pursue alternative approaches to fulfilling its obligations to the City. As a precursor to this discussion, National CORE identified one alternative site for discussion purposes that could be a potential replacement for the Orange Bluff property in the near-term and is committed to exploring additional properties. The following section of this report briefly summarizes a potential candidate site and other options; staff is not requesting that the City Council take final action related to the properties below.

28th Street and Walnut Avenue Property

The 28th & Walnut site is located on a 1.3-acre property at the southwest corner of East 28th Street and Walnut Avenue in Signal Hill. The project site could support a single 3 to 4-story residential building with approximately 60 units and a leasing and property management office, a 1,000 square foot community room, and a private office for support services. A surface parking lot could potentially accommodate approximately 64 stalls. The potential project site could include a total of 60 affordable apartment homes for individuals and families earning below 80% of the AMI with a mix of one, two, and three-bedroom units. One (1) three-bedroom unit will be reserved for an onsite property manager. Onsite amenities will include a children's playground, shaded BBQ, outdoor lounge and dining areas, and multiuse lawn. The Hope through Housing Foundation would also offer onsite programs and services, providing residents with the resources and support they need to thrive.

Alternative Sites:

National CORE is requesting time to conduct additional due diligence and would be required to submit entitlement applications to request a zone change if required, for an alternative site. \Staff has included the 28th and Walnut property in the proposed updated ENA as an option for the City Council's consideration. However, there may be additional privately owned sites that could be suitable for development, potentially in conjunction with a market-rate development. Staff will work with National CORE to identify additional potential sites for feasibility and will return to the City Council with an amendment to the ENA for another possible site once it has been identified. Staff's review will consider currently available public and privately owned properties as possible options for this alternative site.

Amendments to the Exclusive Negotiation Agreement

The proposed revised ENA includes several key updates to ensure that the City, Housing Authority, and National CORE can continue moving forward with the development of the Walnut Bluff and Orange Bluff affordable housing projects despite changes in the broader financial environment (Attachment B). The revisions are intended to preserve the City's ability to facilitate meaningful affordable housing opportunities and to maintain flexibility as project conditions evolve.

The most significant change is the addition of language providing flexibility for National CORE to explore the option of developing a third site along with the Orange Bluff Project. This modification allows the City and National CORE to identify and consider other publicly or privately owned properties should the originally proposed site become unavailable or infeasible for development. The inclusion of this provision ensures the ENA remains viable and adaptable, allowing the City and National CORE to respond to changing site conditions and funding opportunities.

In addition, the ENA revisions acknowledge the shifts in the affordable housing financing landscape that have affected National CORE's ability to secure certain previously anticipated funding sources. These external changes reflect the broader economic and funding challenges currently impacting affordable housing development throughout the region. The updated ENA accommodates these challenges by providing flexibility in the project's timeline and negotiation period, allowing additional time for funding applications, feasibility analysis, and site evaluation.

The ENA has also been updated to reflect National CORE's pursuit of funding through the State's AHSC program. This program, supported by the Greenhouse Gas Reduction Fund, favors larger,

11/13/2025

denser projects that promote sustainability and greenhouse gas reduction through transit access, active transportation, and energy efficiency. The revised ENA supports National CORE's exploration of a scattered-sites approach, which could enhance the competitiveness of the Orange Bluff Project for AHSC funding and align with state sustainability goals.

Overall, the proposed updates to the ENA strengthen the City's partnership with National CORE, provide the flexibility needed to adapt to evolving financial and site conditions, and reaffirm the City's ongoing commitment to expanding affordable housing opportunities within the community.

Recommendation

Staff recommends that the City Council and the City of Signal Hill Housing Authority amend the Exclusive Negotiation Agreement with National CORE to accommodate the proposed inclusion of language to allow for the consideration of potential alternative sites and extend the development timeframes for the Orange Bluff project.

The recommended action would extend the ENA deadlines to September 15, 2027 for the Orange Bluff Project and July 15, 2026 for the 28th & Walnut or Alternative Site project, adding a potential third workforce housing site to the schedule and result in the potential of an additional sixty (60) units of housing. These additional units would provide much-needed housing opportunities for local residents and families, supporting the community's goal of increasing access to safe, affordable workforce housing.

	Reviewed	for	Fiscal	Impact :
--	----------	-----	---------------	-----------------

Siamlu Cox

Administrative Services Officer/Finance Director

Attachments:

- A. Human Health Risk Assessment: Walnut Bluff Development
- B. National CORE Exclusive Negotiation Agreement (ENA)
- C. Revised ENA

MEARNS CONSULTING LLC

ENVIRONMENTAL CONSULTANTS RISK ASSESSORS

738 Ashland Avenue, Santa Monica, California 90405 Cell 310.403.1921 Tel 310.396.9606 Fax310.396.6878 Mearns.Consulting@verizon.net

June 23, 2025

via email

Ms. Colleen T. Doan Community Development Manager City of Signal Hill 2175 Cherry Avenue Signal Hill, California 90755

RE: Memorandum – Study of Human Health Risks Due to Outdoor Air Exposure at Proposed Walnut Bluff Development, City of Signal Hill, California 90755, dated April 16, 2025 prepared by Catalyst Environmental Solutions

Dear Ms. Doan:

The Study of Human Health Risks Due to Outdoor Air Exposure at Proposed Walnut Bluff Development, City of Signal Hill, California 90755, dated April 16, 2025, prepared by Catalyst Environmental Solutions (Catalyst) was received and reviewed on April 16, 2025.

Catalyst estimated cancer risk due to exposure to benzene only and all petroleum-related chemicals of potential concern (COPCs) measured during the month of October 2024 onsite in outdoor air using acceptable regulatory agency guidance.

Catalyst excluded the benzene concentration of 3.2 micrograms per cubic meter ($\mu g/m^3$) detected in October 2024 at onsite location WB05 and used Dixon's Outlier Test to statistically demonstrate this detected concentration was an outlier. Catalyst also performed additional air sampling during December 2024 at four locations and recorded detected concentrations of benzene at 1.7 $\mu g/m^3$, 1.7 $\mu g/m^3$ and 1.9 $\mu g/m^3$, all greater than the concentrations of benzene detected in October. Catalyst did not include these five detected concentrations of benzene in their risk estimates.

Mearns Consulting LLC (Mearns) was able to replicate Catalysts' risk estimates. Mearns also estimated cancer risk for benzene only and all petroleum-related COPCs including the five detected concentrations of benzene: 3.2 $\mu g/m^3$, 1.7 $\mu g/m^3$, 1.7 $\mu g/m^3$ and 1.9 $\mu g/m^3$ omitted by Catalyst. The results are presented below.

Benzene Cancer Risk Calculations

Scenario	Benzene Cancer Risk	All Petroleum-Related COPCs Cancer Risk
MATES V – Regional All Data	1.1 x 10 ⁻⁵	1.0 x 10 ⁻⁵
Catalyst		
Walnut Bluff Offsite Samples	1.0 x 10 ⁻⁵	1.1 x 10 ⁻⁵
Catalyst		
Walnut Bluff Onsite Samples	8.6 x 10 ⁻⁶	1.0×10^{-5}
Walnut Bluff Onsite Samples		
including WB05, and 4 samples		
collected in December 2024	1.47 x 10 ⁻⁵	1.6×10^{-5}

June 23, 2025

The Mearns calculated risk estimate 1.47 x 10⁻⁵ for benzene and 1.6 x 10⁻⁵ for all petroleum-related COPCs includes the five data points for benzene (3.2 μ g/m³, 1.7 μ g/m³, 1.7 μ g/m³ and 1.9 μ g/m³) omitted by Catalyst, is greater than the risk estimates calculated by Catalyst, is within the regulatory agency acceptable risk range of 1 x 10⁻⁴ to 1 x 10⁻⁶ and less than the SCAOMD Air Toxics Hotspots threshold of 1 x 10⁻⁴. Excluding the detected concentration of 3.2 µg/m³, that Catalyst identified as an outlier, from the benzene cancer risk calculations results in a benzene cancer risk of 1.4 x 10⁻⁵, which is not statistically different from the risk calculation 1.47 x 10⁻⁵.

The benefit of including all detected concentrations of benzene in the onsite risk calculations is a more robust risk estimation due to exposure of the outdoor concentrations of benzene detected in the 28 days samples were collected from two separate months with different conditions. The different conditions make the dataset more representative of onsite conditions to which the future site occupants will be exposed.

Comparing Onsite Results to MATES V

The dataset analyzed in the MATES V Study included 60 days of data collected over a 12 month period in 2018-2019 to account for seasonal variability. The dataset analyzed in the Catalyst study included 14 days of data collected in October 2024 only. The differences between the MATES V Study and the Catalyst study include the duration of the data collection, the year of the data collection and the seasonal data collection. As demonstrated by the data collected by Catalyst in December 2024 with greater detected concentrations of benzene than the October dataset, seasonal variability occurs.

Mearns agrees with Catalysts' conclusions that the onsite risk due to exposure to benzene (1.47 x 10⁻⁵) and petroleum-related COPCs (1.6 x 10⁻⁵) is comparable to the risk estimations in the MATES V Study (1 x 10⁻⁵), is less than the SCAQMD Air Toxics Hotspots threshold of 1 x 10⁻⁴, and is within the regulatory agency acceptable risk range of 1×10^{-4} to 1×10^{-6} .

Please do not hesitate to contact me should you have any questions.

Sincerely,

Susan L. Mearns, Ph.D.

Mearns Consulting LLC

Contents

ABSTRACT	vi
SECTION 1 Introduction	1
SECTION 2 Study Design Framework	3
SECTION 3 Field Methods	4
3.1 Monitoring and Sampling Locations	4
3.1.1 Onsite Air Quality Monitoring and Sampling Locations	5
3.1.2 Offsite Air Quality Monitoring and Sampling Locations	6
3.1.3 2023 and 2024 Wind Directions	8
3.1.4 Weather Monitoring Locations	8
3.2 Air Quality Monitoring and Sampling	8
3.2.1 Continuous Photo-Ionization Detection Monitoring – 14-Days	
3.2.2 Time-Integrated Sampling – 14-Days	9
3.2.3 Time-Integrated Sampling – 1-Hour	
3.2.4 Time-Integrated Sampling – 24-Hours	10
3.2.5 Deviations From Work Plan	11
3.3 Personnel and Procedures	
3.4 Site Safety	11
3.5 Site Security and Access Control	
SECTION 4 Monitoring and Sampling Results	
4.1 Meteorological Data	12
4.2 PID Monitoring	
4.2.1 PID Measurements versus Calendar Day	
4.2.2 PID Measurements versus 24-hour Day	14
4.3 Air Quality Samples	15
4.3.1 Screening Criteria	15
4.3.2 14-Day Air Samples	15
4.3.3 1-Hour Air Samples	16
4.3.4 24-Hour Air Samples	16
4.3.5 Comparison Of 14-Day, 24-Hour, and 1-Hour Samples	17
4.3.6 Data Quality Evaluation	18
4.4 Statistical Outliers	18
4.4.1 Field Methods for Outlier Evaluation in December 2024	20
4.4.2 Findings	20
4.5 Petroleum Hydrocarbon Fingerprint	20
SECTION 5 Assessment of Human Health Risks	21
5.1 Exposure Assessment	
5.1.1 Selection of Chemicals of Potential Concern (COPCs)	
5.1.2 Data Usability Evaluation	
5.1.3 Exposure Pathways Analysis and Development of the Conceptual Site Model (CSM)	
5.1.4 Exposure Point Concentrations	
5.1.5 Human Exposure Factors	
5.2 Toxicity Assessment	
5.2.1 MATES V – Summary Description	
, ,	_

	MATES V – Data Trends	
0.0	sk Characterization	
	Cancer Risk and Noncancer Hazard Calculations and Equations	
	Chronic Noncancer Hazards	
	Acute Noncancer Hazards	
	Comparison of Onsite, Offsite, and Regional MATES V Benzene Cancer Risks	
	iscussion of Findings and Uncertainties	
	•	
SECTION 6 Cor	nclusions	32
SECTION 7 Ref	erences	34
Tables		
Table 1.	Sampling Locations (in text)	
Table 2.	14-Day Outdoor Air Samples	
Table 3.	1-Hour Outdoor Air Samples	
Table 4.	24-Hour Outdoor Air Samples	L.L A.L.
Table 5. Table 6.	Characterization of Potential Chronic Human Health Risks Associated with Onsite Out Characterization of Potential Acute Human Health Risks Associated with Onsite Out	
Table 6.	Characterization of Potential Acute Human Health Risks Associated with Offsite Out	
Table 7.	Exposure to Petroleum-Related COPCs	ituoor Aii
Table 8.	Comparison of Regional and Walnut Bluff Average Outdoor Air Petroleum Hydrocarl	hon
Table 6.	Concentrations	3011
Figures		
_	Site Location Map	
Figure 2.	Site Map with Oil and Gas Well Locations	
Figure 3.	Onsite Outdoor Air Sampling Plan	
Figure 4.	Offsite Outdoor Air Sampling Plan	
Figure 5.	Human Health Risk Assessment Conceptual Site Model	
Charts		
Charts Chart 1.	WP01 DID Moscuroments us Campling Periods	
Chart 1. Chart 2.	WB01 PID Measurements vs Sampling Periods WB02 PID Measurements vs Sampling Periods	
Chart 2.	WB03 PID Measurements vs Sampling Periods WB03 PID Measurements vs Sampling Periods	
Chart 4.	WB04 PID Measurements vs Sampling Periods	
Chart 5.	WB05 PID Measurements vs Sampling Periods	
Chart 6.	WB06 PID Measurements vs Sampling Periods	
Chart 7.	WB07 PID Measurements vs Sampling Periods	
Chart 8.	WB08 PID Measurements vs Sampling Periods	
Chart 9.	WB09 PID Measurements vs Sampling Periods	
Chart 10.	WB10 PID Measurements vs Sampling Periods	
Chart 11.	WB11 PID Measurements vs Sampling Periods	
Chart 12.	WB12 PID Measurements vs Sampling Periods	

Table of Contents

- Chart 13. WB13 PID Measurements vs Sampling Periods
- Chart 14. WB14 PID Measurements vs Sampling Periods
- Chart 15. WB17 PID Measurements vs Sampling Periods
- Chart 16. WB18 PID Measurements vs Sampling Periods
- Chart 17. WB19 PID Measurements vs Sampling Periods
- Chart 18. PID Measurements vs 24 Hour Day
- Chart 19. PID Measurements vs 24 Hour Day Arranged by Pattern
- Chart 20. Benzene Concentrations in 1 Hour, 24 Hours, and 2 Week Samples
- Chart 21. Toluene Concentrations in 1 Hour, 24 Hours, and 2 Week Samples
- Chart 22. Ethylbenzene Concentrations in 1 Hour, 24 Hours, and 2 Week Samples
- Chart 23. Total Xylenes Concentrations in 1 Hour, 24 Hours, and 2 Week Samples
- Chart 24. Naphthalene Concentrations in 1 Hour, 24 Hours, and 2 Week Samples
- Chart 25. 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene in 2 Week Samples
- Chart 26. Petroleum Fingerprints
- Chart 27. WB15 Windrose Diagram
- Chart 28. WB16 Windrose Diagram
- Chart 29. WB17 Windrose Diagram
- Chart 30. WB15 Windspeed, Temperature, and Barometric Pressure
- Chart 31. WB16 Windspeed, Temperature, and Barometric Pressure
- Chart 32. WB17 Windspeed, Temperature, and Barometric Pressure
- Chart 33. Comparison of Regional vs Walnut Bluff Benzene Cancer Risk Using MATES Risk Assessment Methodology (Average Concentration)— 1998 to 2024
- Chart 34. Comparison of Regional vs Walnut Bluff Toluene Noncancer Hazard Index Using MATES Risk Assessment Methodology (Average Concentration) 1998 to 2024
- Chart 35. Comparison of Regional vs Walnut Bluff Ethylbenzene Cancer Risk Using MATES Risk Assessment Methodology (Average Concentration) 1998 to 2024
- Chart 36. Comparison of Regional vs Walnut Bluff Total Xylenes Noncancer Hazard Index Using MATES Risk Assessment Methodology (Average Concentration) 1998 to 2024
- Chart 37. Comparison of Regional vs Walnut Bluff Naphthalene Cancer Risk Using MATES Risk Assessment Methodology (Average Concentration) 1998 to 2024
- Chart 38. 14 Day Benzene Concentrations
- Chart 39. 14 Day Toluene Concentrations
- Chart 40. 14 Day Ethylbenzene Concentrations
- Chart 41. 14 Day Xylene Concentrations
- Chart 42. 14 Day Naphthalene Concentrations
- Chart 43. Benzene Concentrations in 2 Week Samples in October 2024 and December 2024
- Chart 44. Toluene Concentrations in 2 Week Samples in October 2024 and December 2024
- Chart 45. Ethylbenzene Concentrations in 2 Week Samples in October 2024 and December 2024
- Chart 46. Total Xylenes Concentrations in 2 Week Samples in October 2024 and December 2024
- Chart 47. Naphthalene Concentrations in 2 Week Samples in October 2024 and December 2024
- Chart 48. 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene in 2 Week Samples in Oct and Dec 2024
- Chart 49. WB16 Windrose Diagram (December 2024)
- Chart 50. WB16 Windspeed (December 2024)
- Chart 51. Average Concentration of Benzene Over Time By Sample Station (MATES V Data 2018-2019)
- Chart 52. Comparison of Benzene Concentrations Detected at Walnut Bluff and MATES V

Table of Contents

Appendices

Appendix A. Field Data Sheets

Appendix B. Quality Assurance Evaluation of Laboratory Data Appendix C. Dixon's Outlier Test for Benzene and Toluene Appendix D. HHRA ProUCL outputs and Outlier Calculations

Appendix E. Laboratory Analytical Reports – 14-day samples – October and December

Appendix F. Laboratory Analytical Reports – 24-hour samples Appendix G. Laboratory Analytical Reports – 1-hour samples

Appendix H. PID Calibration Certificates

GLOSSARY

AQMD South Coast Air Quality Management District
ATSDR Agency for Toxic Substances and Disease Registry
BTEX benzene, toluene, ethylbenzene, total xylenes
Comparable used herein to mean similar in quality and quantity

COPC chemical of potential concern

CSM Conceptual Site Model

CVOCs chlorinated volatile organic compounds

DTSC California Department of Toxic Substances Control

EPC Exposure Point Concentration HHRA Human Health Risk Assessment

HI Hazard Index HQ Hazard Quotient

ILCR individual incremental lifetime cancer risk
MATES V Multiple Air Toxics Exposure Study V

OEHHA California's Office of Environmental Health Hazard Assessment

Offsite Monitoring and sampling locations studied herein not located on the Site labelled WB17,

WB18, labelled WB19

Onsite Walnut Bluff property, including monitoring and sampling locations WB01 through WB16

PCE Tetrachloroethene
PID Photo-ionization detector
ppbv parts per billion by volume

Region / Regional Air quality and associated risks documented in the MATES V Study

Report Study of Human Health Risks Due to Exposure to Outdoor Air [at the] Proposed Walnut

Bluff Development

REL Reference Exposure Level

RL reporting limit

RME Reasonable Maximum Exposure
RSL Regional Screening Levels
AEGL Acute Exposure Guideline Level
USDOE United States Department of Energy

AGV acute Air Guidance Values

SCAQMD South Coast Air Quality Management District

SHP Signal Hill Petroleum
Site Walnut Bluff property

SL screening level

µg/m³ micrograms per cubic meter, also known as parts per billion by mass

UCL upper confidence level

USEPA United States Environmental Protection Agency

VOCs Volatile Organic Compounds

ABSTRACT

On behalf of the City of Signal Hill (City), Catalyst Environmental Solutions Corporation (Catalyst) evaluated the quality of, and potential risks to human health posed by, outdoor air at an approximately 2-acre property located at the corner of Willow Street and Walnut Avenue in the City of Signal Hill, Los Angeles County, California (Site). This Site is currently owned by Signal Hill Petroleum (SHP). The quality of outdoor air was characterized by 14-day, 1-day, and 1 hour time integrated samples collected between October 1 and October 15, 2024 and by 4 onsite 14-day samples collected in December 2024. The samples were collected from 14 locations distributed across the Site and from 3 nearby properties also owned by SHP. The samples were analyzed by a California certified laboratory method TO-15sim to provide measurable concentrations of volatile organic compounds (VOCs). The results indicate that the 14-day analytical results and risks based on the onsite samples and offsite samples are comparable to the risks presented in the South Coast Air Quality Management District's Multiple Air Toxics Exposure Study V (MATES V) performed for the broader Los Angeles basin in 2018 and 2019. In summary, the onsite air quality measured in October 2024 poses no additional measurable risk to human health compared with offsite and regional conditions, and the outdoor air quality measured at the Site is comparable to regional air quality conditions characterized by the MATES V study.

SECTION 1

Introduction

On behalf of the City of Signal Hill (City), Catalyst Environmental Solutions Corporation (Catalyst) prepared this Study of Human Health Risks Due to Exposure to Outdoor Air at the Proposed Walnut Bluff Development (Report) located at the corner of Willow Street and Walnut Avenue in the City of Signal Hill, Los Angeles County, California (Site; Figure 1). The overall purpose of this Report is to present the findings from the assessment of human health risks posed by volatile organic compounds (VOCs) detected in outdoor air samples collected at the Site between October 1 and October 15, 2024.

The Site consists of an approximately two-acre parcel that is currently owned by Signal Hill Petroleum (SHP) and is used for oil extraction with eight wells onsite, consisting of four abandoned wells, two idle wells, and two active wells (Figure 2). The City plans to support redevelopment of this property that will include an apartment building and separate recreational building.

Prior to redevelopment, we understand that SHP has plans to remove relic infrastructure and remediate the parcel to standards that support residential land use. In addition, development of the Site will require engineering controls (e.g., methane mitigation system) to be installed sub-slab of all proposed buildings to mitigate risks and hazards due to the potential for volatile organic compounds (VOCs) and methane vapor intrusion from the subsurface.

Because two of the wells on the Site will remain active for oil and gas production following development, the City commissioned the *Work Plan for Human Health Risk Assessment* (Catalyst 2024) to evaluate the potential human health risks posed by outdoor air to future residents and recreational users of the Site. The objective was to collect site-specific outdoor air data to support an assessment of potential human health risks posed by VOCs in outdoor air.

The scope of work involved: 1) reviewing existing air quality data documented in the Multiple Air Toxics Exposure Study V (MATES V) for the Los Angeles basin as provided by the South Coast Air Quality Management District (SCAQMD); 2) collecting air quality data to characterize outdoor air quality on and adjacent to the Site; and 3) analyzing the collected data to prepare a site-specific assessment of potential human health risks. The investigation was conducted in accordance with the most current methods recommended by the California Department of Toxic Substances Control (DTSC), California's Office of Environmental Health Hazard Assessment (OEHHA), and the U.S. Environmental Protection Agency (USEPA). This report documents the methods and results of the study and assessment of potential human health risks.

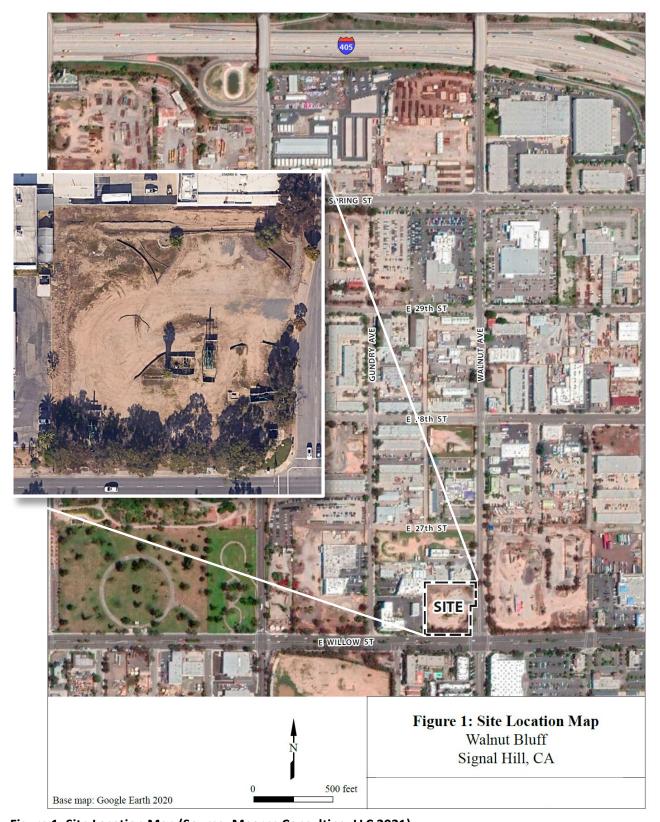


Figure 1. Site Location Map (Source: Mearns Consulting, LLC 2021)

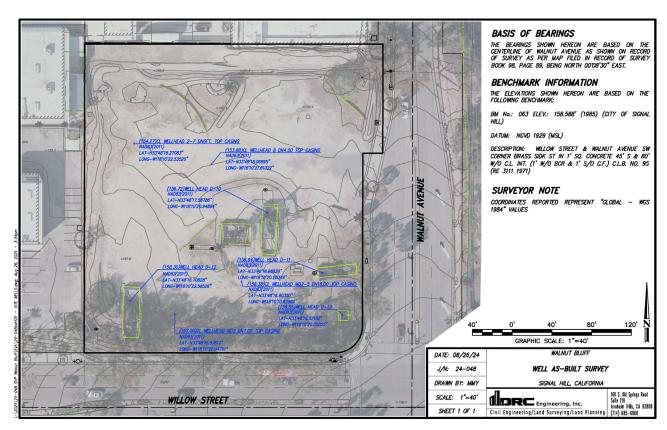


Figure 2. Site Map with Oil and Gas Well Locations (Source: SHP, 2021)

SECTION 2

Study Design Framework

The Work Plan for Human Health Risk Assessment, consisting of an air quality monitoring and sampling plan, was developed to characterize air quality at the Site and its vicinity and to generate the data required to support an assessment of potential human health risks. More specifically, the study was designed to generate data to enable evaluations of:

- Air quality impacts from VOCs (if measurable) associated with each of the onsite active and idle wells
- Concentrations of VOCs in outdoor air at the Site
- Effects (if any) of wind direction, temperature, and barometric pressure on outdoor air quality
- Cumulative cancer risk and chronic and acute noncancer hazards posed by potential exposure to outdoor air at the Site.

The Study Design was based on these two key assumptions:

- Onsite active, idle, and previously abandoned oil and gas wells are potential sources of measurable concentrations of VOCs to outdoor air
- Outdoor air in the vicinity of the Site, including air upwind from the Site and in the Los Angeles region contain measurable concentrations of VOCs.

Study Design Framework

22

Catalyst also required the following support during the implementation of the Study:

- Routine SHP operations would continue without regard nor alteration due to the study
- Security would be installed to ensure that all monitoring equipment would be protected and not subjected to tampering.
 - We note that security consisted of temporary chain-link fencing installed around the entire Site and 24-hour video surveillance. No trespassing nor tampering of the monitoring equipment was observed.

SECTION 3

Field Methods

The study consisted of real-time monitoring of outdoor air quality, collection of outdoor air samples, and measurement of meteorological parameters. All data were collected during October 1 through October 15, 2024 at the locations shown on Figures 3 and 4. This section describes the means and methods employed to collect these data.

3.1 Monitoring and Sampling Locations

Monitoring and sampling were performed over a 14-day period at 16 onsite and 3 offsite locations. At each location (onsite, offsite, and meteorological), the sampling and monitoring devices were deployed vertically within the breathing zone, approximately 3 to 5 feet above ground surface. As discussed in Section 3.1.3, the dominant wind direction in September 2023 and September 2024 was primarily from the southwest/west-southwest with a subdominant direction from the west-northwest; this wind direction informed some of the location-selection rationale provided in Table 1 below provides the rationale for each sampling and monitoring location.

Table 1. Sampling Locations

Site ID	Onsite/Offsite	Location Description and Rationale
WB1	Onsite	Located upwind and crosswind from one of the wells (API #03708973) that will remain active
WB2	Onsite	Located at one of the wells that will remain active (API #03708973)
WB3	Onsite	Located upwind and crosswind of one of the wells (API #03708973) that will remain active and along the western property margin
WB4	Onsite	Located upwind and crosswind on the property, and just west of the proposed residential building in the northern portion of the Site
WB5	Onsite	Located within the footprint of the proposed residential building
WB6	Onsite	Located in the center of the proposed residential building in the northern portion of the Site, and along the upwind margin of the property for wind towards the southeast
WB7	Onsite	Located within the footprint of the proposed residential building

Site ID	Onsite/Offsite	Location Description and Rationale
WB8	Onsite	Located along the east side of the proposed residential building in the northern portion of the Site, and along the downwind margin of the property for wind towards the southeast
WB9	Onsite	Located at the middle eastern side of the property and largely along the downwind side of the property
WB10	Onsite	Located at one of the wells that will remain active in the center of the Site (API #03708971)
WB11	Onsite	Located at an idle well that is proposed for abandonment (API #03708975)
WB12	Onsite	Located at an idle well that is proposed for abandonment (API #03708972)
WB13	Onsite	Located in the center of the proposed recreational building in the southern portion of the Site
WB14	Onsite	Located at the western side of the proposed recreational building
WB15	Onsite	Weather station in the southwest quadrant of the Site
WB16	Onsite	Weather station in the northeast quadrant of the Site
WB17	Offsite	Located offsite, upwind and/or crosswind at a nearby SHP facility
WB18	Offsite	Located offsite, upwind and/or crosswind near the 405 freeway at SHP Drill Site #1 located at 805 East Spring Street
WB19	Offsite	Located offsite, upwind and/or crosswind at the SHP Town Center Northwest site

3.1.1 Onsite Air Quality Monitoring and Sampling Locations

Air quality monitoring and sampling was performed at 14 onsite sampling locations (WB1 through WB14) and weather monitoring was performed at 2 onsite locations (WB15, WB16), as shown in Figure 3. The onsite sampling locations were selected to characterize outdoor air quality in the vicinity of:

- two active wells
- two idle wells
- area within the footprint of the proposed residential apartment building
- area within the footprint of the proposed recreational building
- along the upwind, crosswind and downwind margins of the property
- offsite areas upwind, crosswind, and downwind of the property.

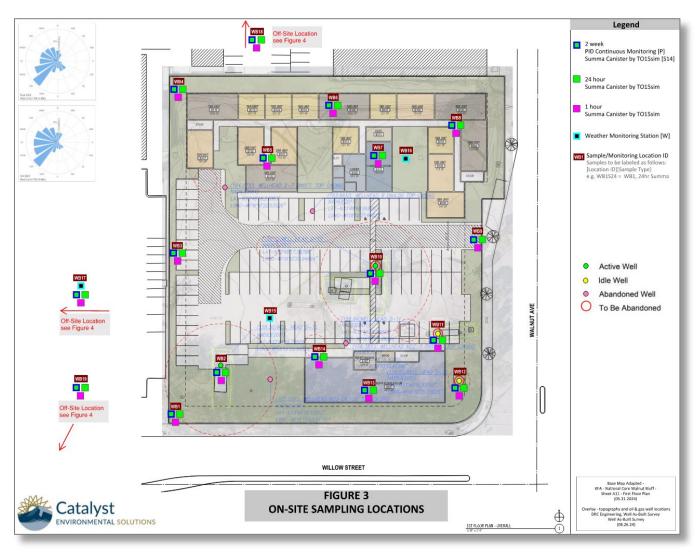
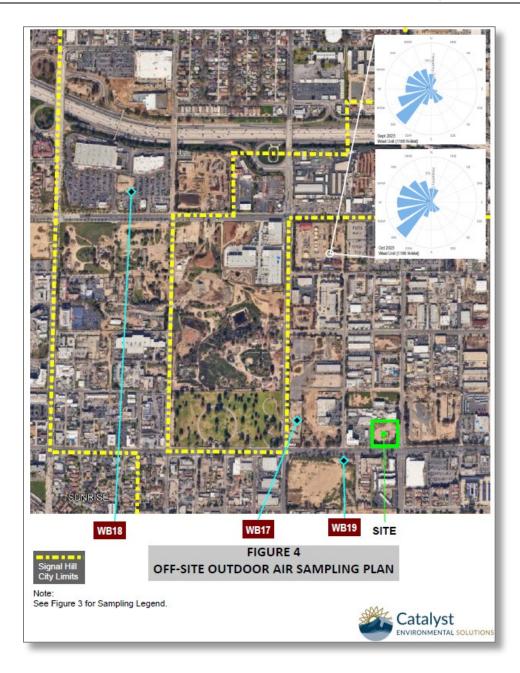
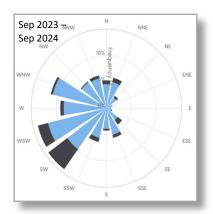
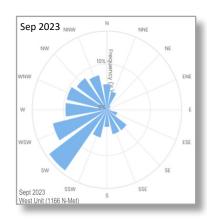
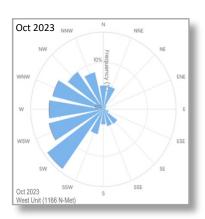


Figure 3. Onsite Sampling Plan

3.1.2 Offsite Air Quality Monitoring and Sampling Locations

Air quality monitoring and sampling were performed at three offsite study locations (WB17 through WB19) as shown in Figure 4. The three offsite sampling locations were selected to characterize outdoor air quality at similar SHP facilities upwind or crosswind from the Site. SHP provided access to the three offsite locations.


Figure 4. Offsite Sampling Plan

3.1.3 2023 and 2024 Wind Directions

Wind direction and speed are important phenomena to consider when evaluating air quality in an outdoor environment. The leftmost wind rose below is for the period between September 12, 2023 and September 11, 2024 measured at the SHP facility located at 1215 E 29th Street in the City of Signal Hill, which is approximately 0.35-miles northwest of the Site (provided by SHP). This wind rose indicates that the dominant wind direction at that time was primarily from the southwest/west-southwest with a subdominant direction from the west-northwest (see adjacent figure). Similarly, SHP provided the center and rightmost wind roses at other nearby facilities in the City, which show similar dominant and sub-dominant wind directions in the months of September 2023 and October 2023. It was assumed that the dominant and subdominant wind directions at the Site were similar to these wind roses and would remain similar during the time of the study.

3.1.4 Weather Monitoring Locations

Monitoring of meteorological conditions was performed at three locations. Two locations (WB15, WB16) were located onsite, and one location (WB17) was located offsite. At each location, a Lufft WS600 meteorological monitoring station was installed and maintained to measure and record every 15 minutes throughout the study period: wind direction, wind speed, air temperature, and absolute air pressure (aka, barometric pressure). Refer to Section 4.1 for the measurements of actual wind direction and wind speed during this study.

3.2 Air Quality Monitoring and Sampling

This task involved the collection of outdoor air quality data to characterize both onsite and offsite conditions. Over a period of 14 continuous days, the monitoring and sampling program involved the following collection of continuous and concurrent data as well as time-integrated air quality samples at each of the locations shown on Figures 3 and 4, as follows:

- Continuous measurements of total concentrations of VOCs using a photo-ionization detector meter (PID) for 14 days
- 14-day time integrated air samples
- 24-hour time integrated air samples
- 1-hour time integrated air samples
- Continuous measurements of meteorological parameters.

Field data sheets are provided in Appendix A.

3.2.1 Continuous Photo-Ionization Detection Monitoring – 14-Days

Air quality was monitored continuously at the 14 onsite sample locations and the 3 offsite sample locations using PIDs configured to measure in parts per billion by volume (ppbv, or ppb) and record the total concentration of VOCs every 15-seconds. The data were evaluated to identify:

- Changes in VOC concentrations over time at each monitoring location
- Correlations (if any) between VOC concentrations, time, wind speed and direction, and barometric pressure
- · Overall range of total VOC concentrations in air
- Diurnal variation in the concentration of total VOCs at each of the monitoring locations. The diurnal distribution of relatively higher and lower concentrations was used to identify the optimal time interval(s) during a 24-hour period to collect 1-hour air samples for laboratory analysis that will likely yield the highest daily VOC concentrations in outdoor air, as described below.

The PID meters were supplied by Field Environmental Instruments (FEI), located in Signal Hill. Prior to deployment, the PIDs were calibrated by FEI following the manufacturer's instructions. Calibration certificates are provided in Appendix H. The PIDs deployed at the Site were the ppbRAE 3000 or multiRAE Pro manufactured by Rae Systems in San Jose, California. All PIDs were secured onto a rigid tripod, measured VOCs at 4 to 5 feet above grade, and were powered by a dedicated battery.

3.2.2 Time-Integrated Sampling – 14-Days

Six-liter Summa canisters were deployed on October 1, 2024 at each location also containing a PID to collect 14-day time-integrated samples over the duration of the study. Enthalpy Analytical in Orange, California, a State of California certified laboratory, provided Summa canisters and 14-day flow controllers, and analyzed the Summa canisters for VOCs using USEPA Method TO-15sim. Charts 1 through 17 depict the PID measurements and the 14-day sampling interval at all sampling locations.

Each 6-liter Summa sample canister was fitted with a vacuum gauge and a flow controller to collect the sample over an approximately 14-day period. Each canister, flow controller, and gauge was individually certified clean by the analytical laboratory. After the canisters were set in the breathing zone in their respective locations, the initial vacuum reading was recorded on field forms. Canisters were confirmed to be at a minimum vacuum of 27-inches of mercury prior to use. After 14 days, the valve on the Summa canister was closed and the final vacuum was

measured and recorded. Each canister was labeled appropriately, and a chain-of-custody manifest was completed onsite to accompany the samples to the lab.

The following items were recorded for each sample:

- Sample location (including figure and photographs)
- Canister and flow regulator identification numbers
- Initial vacuum
- Time and date that sample collection began and ended
- Final vacuum.

3.2.3 Time-Integrated Sampling – 1-Hour

The PID measurements recorded during the first six days at each monitoring location were evaluated to identify

the daylight hour when the highest PID measurements were typically recorded. For safety reasons, collection of the 1-hour air sample was limited to daylight hours. Table 3 summarizes the 1-hour sampling timeframe selected for each location. Charts 1 through 17 depict the PID measurements and the 1-hour sampling interval at all sampling locations.

The six-liter summa canisters were deployed on October 9, 2024 in a similar manner to the 14-day samples. Pace Analytical, a State of California certified laboratory, supplied the Summa canisters and flow controllers, and analyzed the air samples for VOCs by USEPA Method TO-15sim.

3.2.4 Time-Integrated Sampling – 24-Hours

The PID measurements recorded during the first six days at each monitoring location were evaluated to identify the day of the week that corresponded with relatively higher measurements of VOCs compared to other days. However, the PID data yielded no indication that any particular day of the week corresponded with relatively higher concentrations than any other day. Therefore, the 6-liter Summa canisters for collecting a 24-hour air sample were deployed at each sampling location on October 10, 2024, the day following the collection of the 1-

hour air sample. Charts 1 through 17 depict the PID measurements and the 24-hour sampling intervals at all sampling locations.

The six-liter Summa canisters were deployed on October 10, 2024 in a similar manner to the 14-day samples. Pace Analytical, a State of California certified laboratory, supplied the Summa canisters and flow controllers, and analyzed the air samples for VOCs by USEPA Method TO-15sim.

3.2.5 Deviations From Work Plan

Location WB07 was sampled for 1 hour. However, the summa canister arrived at the laboratory fully evacuated and could not be analyzed. Because the study generated data from 13 other locations on the Site, the lack of a 1-hour sample at this location is considered to be an insignificant deviation and does not materially affect the results and conclusions presented herein.

All offsite outdoor air sampling locations were adjusted to locations shown in Figure 4 as follows:

- WB17 was changed because the County Assessor's office did not provide access for this study.
- WB18 was changed to avoid conflict with oil and gas well infrastructure.
- WB19 was changed to avoid conflict with oil and gas well infrastructure.

The above changes are slight and considered immaterial to the overall findings in this study.

Following publication of the Work Plan, feedback from Dr. Susan Mearns (City consultant) and the City as well as discussions with SHP (property owner) and National Core (potential buyer) resulted in modifying the scope of work to remove overt monitoring and sampling at the abandoned wells. Instead, the study evaluated outdoor air quality throughout the Site, which includes the area containing the previously abandoned wells, but did not overtly measure outdoor air quality at each of the abandoned well locations. Because the study generated multiple samples from 14 locations across the Site, and because samples purposefully collected adjacent to active and idle wells did not yield concentrations significantly different from samples collected further away from these wells (as discussed herein below), the lack of samples deployed precisely above abandoned well locations is considered to not materially affect the results and conclusions presented herein.

3.3 Personnel and Procedures

All environmental work was performed by qualified Catalyst environmental personnel who supervised the field activities and oversaw all phases of the work including managing subcontractors. All field procedures (e.g., permitting, sampling protocol, chain-of-custody, preparation of a Health and Safety Plan, etc.) followed City of Signal Hill, Los Angeles County, and State of California guidelines, as well as Catalyst's Standard Operating Procedures.

3.4 Site Safety

A site-specific Health, Safety, and Environmental Plan (HSE) was developed in accordance with the California Occupational Safety and Health Administration (Cal-OSHA) guidelines for Hazardous Waste Operations Standards (Title 29 CFR, Section 1910.120) and California Code of Regulations (Title 8 CCR, Section 5192). The HSE Plan provided field personnel with an understanding of the potential chemical and physical hazards, protection of any offsite receptors, procedures for entering the Site, health and safety procedures, and emergency response to

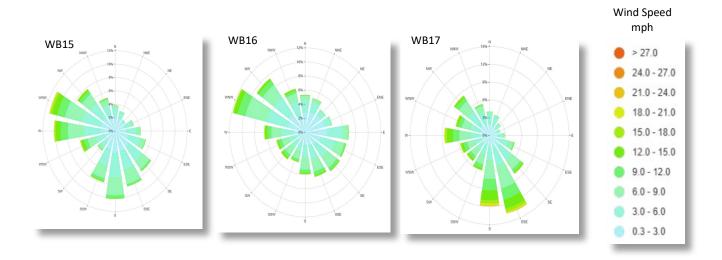
hazards should they occur. In addition, the HSE Plan addressed the appropriate level of Personal Protective Equipment (PPE) for onsite workers during activities at the Site. A copy of the HSE was present onsite at all times and kept in an easily accessible location.

3.5 Site Security and Access Control

Because the scope of work involved the use of various air quality monitoring and sampling equipment on a continuous basis, site security measures were implemented to protect the safety of site workers and integrity of the study, prevent unauthorized access to the Site, and reduce risk of equipment damage, theft, and vandalism. The security measures used included: 1) installation of temporary fencing with locking gates around the perimeter of the Site and offsite monitoring locations where no permanent fencing existed; 2) installation of video cameras and remote monitoring; 3) deployment of security lighting; and, 4) where feasible, equipment was set back a minimum of 20 feet from property lines to ensure public safety and the safety of the equipment.

SECTION 4

Monitoring and Sampling Results


This section presents the data resulting from the monitoring and sampling scope described in Section 3.

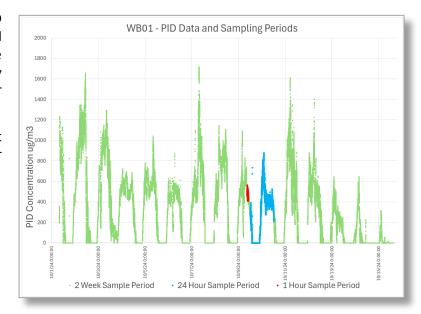
4.1 Meteorological Data

Section 3.1.4 presents the wind directions recorded near the Site from September 2023 through September 2024, and in the months of September and October 2023, which showed the dominant wind direction was primarily from the southwest/west-southwest with a subdominant direction from the west. During this October 2024 study, the meteorological stations (WB15, WB16, and WB17) measured and recorded wind direction, temperature, and barometric pressure. Charts 27 through 29 present wind direction and wind speed on a wind rose. Charts 30 to 32 present wind speed, temperature, and barometric pressure. The data show that temperature and barometric pressure fluctuated within the normal and anticipated range for the season and therefore, are interpreted to have not materially affected the representativeness of the results presented herein.

As shown below, the dominant west-northwest wind direction measured at the onsite locations WB15 and WB16 and the dominant south-southeast offsite location WB17 differed from the dominant west-southwest 2023 direction. However, the subdominant wind direction from the west recorded in 2023 matches reasonably well with the onsite dominant wind direction from the west and west-northwest. Charts 30 through 32 present the histograms of the wind speed measured from October 1 through October 15, 2024.

As discussed in detail in Section 5, because the offsite, onsite, and regional concentrations and risks are comparable, the inconsistency between the anticipated and actual wind directions is considered immaterial to the conclusion drawn in this report.

4.2 PID Monitoring


Measurements of total VOC concentrations were recorded every approximately 15 seconds at each of the 14 onsite (WB01 - WB14) and 3 offsite (WB17 - WB19) monitoring stations. These data are presented graphically in two forms utilizing two different X-axes.

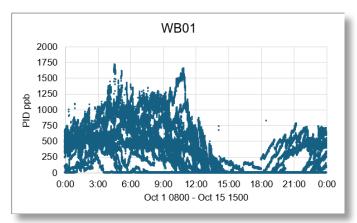
4.2.1 PID Measurements versus Calendar Day

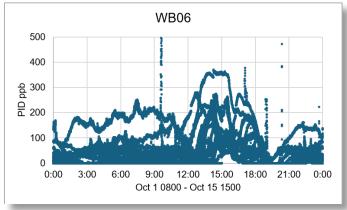
Charts 1 through 17 present the PID measurements with the x-axis structured chronologically by day. The y-axis for the charts for all locations was selected to display the data that represents measurements of air quality.

An example chart, with PID measurements at WB01, is provided here. The charts are color coded to show the following:

- Green depicts the entire duration of the 14-day time integrated air sample
- Blue depicts the entire duration of the 24hour air sample
- Red depicts the entire duration of the 1hour air sample.

It is noted that because bump test events were performed during the monitoring period, the data collected at each location also include concentrations considerably higher than those actually present in outdoor air. The bump tests involved briefly exposing the PID sensor to 10ppm of isobutylene gas to evaluate if the PID reads the concentration as expected. An appropriate PID response confirms the detector reliably measures VOCs. Bump tests were performed by FEI and field notes were not recorded. If the y-axis was adjusted to include the bump

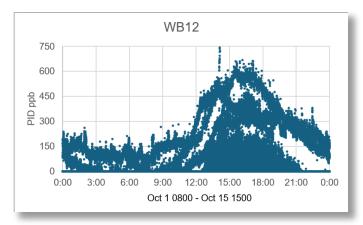

test events, then the diurnal patterns would be too subtle to observe. It is also noted that to avoid graphically calling unnecessary attention to the bump test events, the PID data are plotted as points, rather than lines connecting each data point.

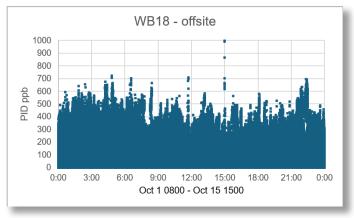

4.2.2 PID Measurements versus 24-hour Day

Most of the locations yielded PID data that show diurnal variations over time. It is postulated that these diurnal fluctuations are associated with both anthropogenic factors, such as vehicle traffic patterns, and meteorological patterns, such as changes in wind direction. The potential significance of the relatively higher PID measurement revealed within the diurnal fluctuations was evaluated via the collection of 1-hour outdoor air samples as discussed in Section 4.3.3. Understanding the causes of these diurnal patterns is beyond the scope of this study and the causes are considered to be immaterial to the risk assessment objectives of this study.

Nonetheless, in an attempt to gain some further insight into these diurnal patterns, the same PID data were plotted with the X-axis structured as a 24-hour day. Chart 18 presents these PID measurements with the charts ordered sequentially by monitoring location. Chart 19 is organized to show locations with similar diurnal patterns. The y-axis for the charts for all locations was selected to display the data that represents measurements of air quality, excluding bump test events.

For example, PID measurements at WB01 show a diurnal pattern with low total VOC concentrations routinely recorded by the PID between 2pm and 6pm. Other locations with a similar pattern are WB07, WB13, WB14, and WB19.




A different pattern emerges with PID measurements at WB06, which shows a diurnal pattern with slightly lower concentrations routinely recorded around 12pm, slightly higher concentrations recorded around 2pm to 6pm, followed by a rapid decline at about 7pm. Other locations with a similar pattern are WB03, WB05, WB08, WB09, and WB10.

PID measurements at WB12 show a diurnal pattern with marked rise in total VOC concentrations routinely recorded in the afternoon. One other location with this pattern is the offsite location WB17.

There are also locations that yielded PID concentrations with either no discernable pattern or a pattern that was not replicated at other monitoring locations. For example, the WB18 location.

It is also noted that PID data recorded at WB04 produced total VOC concentrations considerably lower than all other locations. Similarly, PID data recorded at WB11 also produced mainly very low total VOC concentrations. Repeated bump tests of the PID at these locations were performed and the ppbRAE demonstrated proper function. The relatively unusual PID data recorded at these locations cannot be explained. Regardless, as shown below, the air quality samples collected at WB04 and WB11 reveal total VOC concentrations similar in magnitude to those collected throughout the study.

4.3 Air Quality Samples

4.3.1 Screening Criteria

The analytical data tables compare the measured concentrations with the following chronic screening criteria:

- DTSC (2022a) HHRA Note 3 residential air screening levels for carcinogenic risks (SLc)
- DTSC (2022a) HHRA Note 3 residential air screening levels for noncarcinogenic hazard (SLnc)
- USEPA (2024) Regional Screening Levels for residential air carcinogenic risk (RSLc)
- USEPA (2024) Regional Screening Levels for residential air noncarcinogenic hazard (RSLnc).

It is important to note that not all detected VOCs have DTSC SLs, not all detected VOCs have USEPA RSLs, and that some detected VOCs have neither or both.

4.3.2 14-Day Air Samples

Laboratory analytical results for these samples are summarized in Table 2. Laboratory analytical reports are presented in Appendix E. These data are used in Section 5 to evaluate human health chronic cancer risks and noncancer hazards. The following summarizes those VOCs that exceed chronic screening levels.

- Petroleum-related VOCs
 - Benzene ranged narrowly at the onsite and offsite locations from 0.72 μg/m³ to 0.99 μg/m³, and as discussed below there is an outlier concentration of 3.2 μg/m³ at WB05. Concentrations at all onsite and offsite locations exceeded both the SLc and RSLc.

Naphthalene ranged onsite from below the reporting limit of $0.052 \, \mu g/m^3$ to $0.14 \, \mu g/m^3$, and ranged offsite from below the reporting limit of $0.058 \, \mu g/m^3$ to $0.073 \, \mu g/m^3$. Naphthalene exceeded the RSLc at three locations, WB10, WB11, and WB13.

Nonpetroleum-related VOCs

- Carbon tetrachloride ranged narrowly at the onsite and offsite locations from 0.45 μ g/m³ to 0.47 μ g/m³. There are six onsite locations and one offsite location that equaled the SLc and RSLc of 0.47 μ g/m³.
- Chloroform ranged narrowly at the onsite and offsite locations from 0.13 μg/m³ to 0.17 μg/m³.
 Concentrations at all onsite and offsite locations exceeded the RSLc.

4.3.3 1-Hour Air Samples

Laboratory analytical results for these samples are summarized in Table 3. Laboratory analytical reports are presented in Appendix G. These data are used in Section 5 to evaluate human health acute noncancer hazards.

The following summarizes those VOCs that exceed chronic screening levels. It is important to note that because chronic screening levels are considerably lower than acute screening levels, the comparison of chronic screening levels to the 1-hour VOC concentrations provides a very conservative list of VOCs that might pose a risk and hazard. Acute noncancer hazards are appropriately assessed in Section 5.

Petroleum-related VOCs

- Benzene ranged narrowly at the onsite and offsite locations from 0.88 μg/m³ to 1.9 μg/m³.
 Concentrations at all onsite and offsite locations exceeded both the SLc and RSLc.
- Naphthalene narrowly ranged at the onsite and offsite locations from 0.13 $\mu g/m^3$ to 0.38 $\mu g/m^3$. Concentrations at all onsite and offsite locations exceeded the RSLc.

Nonpetroleum-related VOCs

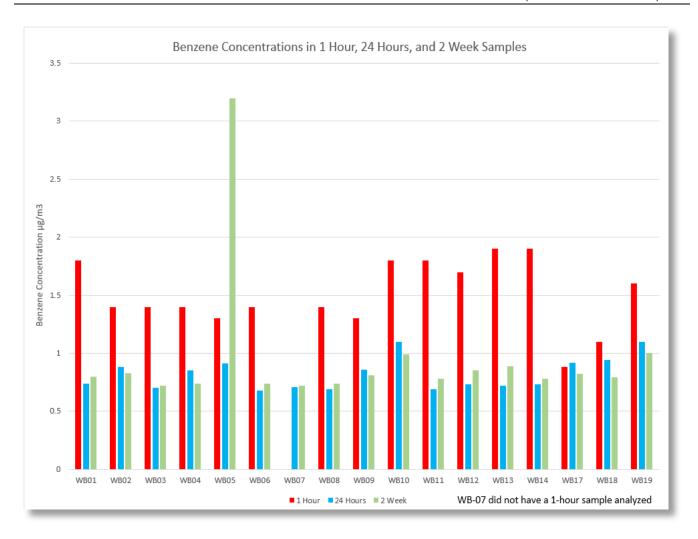
- Carbon tetrachloride ranged narrowly at the onsite and offsite locations from 0.49 μ g/m³ to 0.51 μ g/m3. Concentrations at all onsite and offsite locations exceeded both the SLc and RSLc.
- Chloroform ranged narrowly at the onsite and offsite locations from 0.19 μg/m³ to 0.27 μg/m³.
 Concentrations at all onsite and offsite locations exceeded the RSLc.
- 1,2 Dichloroethane exceeded the RSLc at three onsite locations and one offsite location. All exceedances were reported at 0.11 μg/m³.

4.3.4 24-Hour Air Samples

Laboratory analytical results for these samples are summarized in Table 4. Laboratory analytical reports are presented in Appendix F. These data are not used in Section 5 to evaluate chronic human health risks because the 14-day samples better represent the average concentration to which a receptor might be exposed. But, because longer term time-integrated 14-day samples run a greater risk of disturbance (e.g., physical, meteorological) to sample integrity, these 24-hour samples are used herein to evaluate if the 14-day samples reasonably represent site conditions over the longer term. The following summarizes those VOCs that exceed chronic screening levels.

Petroleum-related VOCs

Benzene ranged narrowly at the onsite and offsite locations from 0.68 μ g/m³ to 1.1 μ g/m³. The high concentration of 1.1 μ g/m³ was reported at the onsite location WB10 and the offsite location WB19. Concentrations at all onsite and offsite locations exceeded both the SLc and RSLc.


- Naphthalene narrowly ranged at the onsite and offsite locations from 0.13 μg/m³ to 0.43 μg/m³.
 Concentrations at all onsite and offsite locations exceeded the RSLc.
- Nonpetroleum-related VOCs
 - Carbon tetrachloride ranged narrowly at the onsite and offsite locations from 0.46 $\mu g/m^3$ to 0.50 $\mu g/m^3$. Concentrations at all but one onsite location and all offsite locations exceeded both the SLc and RSLc of 0.47 $\mu g/m^3$.
 - Chloroform ranged narrowly at the onsite and offsite locations from 0.14 μg/m³ to 0.17 μg/m³.
 Concentrations at all onsite and offsite locations exceeded the RSLc.

Overall, the 1-day samples yielded concentrations reasonably comparable to the 14-day sample concentrations suggests that concentrations are relatively consistent each day throughout this 14 day monitoring period.

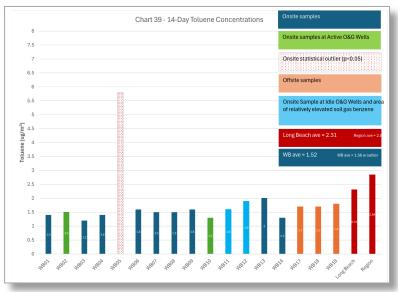
4.3.5 Comparison Of 14-Day, 24-Hour, and 1-Hour Samples

Charts 20 through 24 compare the concentrations of petroleum-related VOCs measured in the 14-day, 24-hour, and 1-hour samples. Chart 25 compares the concentrations of 1,2,4-trimenthylbenzene and 1,3,5-trimethylbenzene in 14-day samples, these two VOCs were not analyzed in the 1-hour and 24-hour samples.

In nearly all cases, the highest concentrations were detected in the 1-hour samples and the lowest concentrations were measured in the 14-day samples. This distribution validates the overall intent of the sampling strategy, which was to capture the long-term average concentration in the 14-day samples and the likely higher concentrations (based on PID data) in the 1-hour samples. It is noted that, again in most cases, the concentrations measured in the 24-hour and 14-day samples are quite comparable. This comparison indicates that daily average concentrations do not vary significantly over longer, in this case 2-week, time horizons. An example comparison chart is provided below for benzene, which includes the outlier concentration at WB05 as discussed below in Section 4.4.

4.3.6 Data Quality Evaluation

The laboratory analytical reports and field sampling sheets were evaluated to identify potential issues that could impact the quality and/or representativeness of the samples and data reported by the laboratory. The Laboratory Data Review Checklist for the Air Samples was completed and the analytical data returned by Pace Analytical and Enthalpy Analytical, are provided in Appendix B. No significant quality control issues were identified. Therefore, the data are considered reliable and reasonably representative of Site conditions.


4.4 Statistical Outliers

Two statistical outliers were identified in the 14-day sample dataset, one for benzene and one for toluene, both at WB05. Onsite outdoor air benzene concentrations in the 14-day samples ranged from 0.72 to 3.2 μ g/m³. Dixon's Outlier Test identifies the benzene concentration of 3.2 μ g/m³ in the WB05 sample as a statistically significant outlier at p=0.01 (Appendix C). Similarly, onsite outdoor air toluene concentrations in the 14-day samples ranged from 1.2 to 5.8 μ g/m³. Dixon's Outlier Test identifies toluene concentration of 5.8 μ g/m³ in the WB05 sample as a statistically significant outlier based at p=0.01 (Appendix C).

A "p" value of 0.01 means that the test has a 99% chance that the results were not due to chance and the outlier designation is statistically significant. Furthermore, it is reasonable to conclude that benzene and toluene in the 14-day sample at WB05 are unlikely to be representative of outdoor air quality at that location because:

- 1-hour samples collected when the PID revealed relatively higher concentrations of VOCs during the day did not contain relatively higher concentrations of benzene nor toluene compared to other 1hour samples,
- WB05 is not located adjacent to an oil well, and because samples located adjacent to active and idle wells did not yield relatively higher concentrations of benzene and toluene,
- Concentrations at locations that are crosswind, upwind, and downwind (WB04, WB06, WB03, WB10, WB07) to WB05 show no corresponding effects indicating the absence of any similarly elevated concentrations coming onsite towards WB05 or elevated concentrations downwind from WB05, it is reasonable to conclude that benzene and toluene in the 14-day sample at WB05 are unlikely to be representative of outdoor air quality at that locationWB05.

Therefore, the benzene and toluene concentrations in the 14-day sample at WB05 are not utilized herein to evaluate chronic risks posed by outdoor air at the Site. Exclusion of the outliers in the calculation of risks is consistent with USEPA 2002 and USEPA 2000.

Excluding the outlier, onsite outdoor air benzene concentrations ranged from 0.72 to 0.99 $\mu g/m^3$. This rather tight range is slightly less than the offsite outdoor air benzene concentrations, which ranged from 0.79 to 1.0 $\mu g/m^3$. Excluding the toluene outlier, onsite outdoor air toluene concentrations ranged from 1.2 to 2 $\mu g/m^3$. This rather tight range is slightly higher than the offsite outdoor air toluene concentrations, which ranged from 1.7 to 1.8 $\mu g/m^3$. As discussed further below, this range in concentrations is comparable to those reported in MATES V.

A graphic depiction of the WB05 benzene and toluene outlier are shown above. Nonetheless, in order to further evaluate the benzene and toluene outliers at WB05, a second round of 14-day sampling occurred in December 2024 at 4 sampling locations as described below.

4.4.1 Field Methods for Outlier Evaluation in December 2024

From December 2 to December 16, 2024, six-liter Summa canisters were utilized at 4 locations (WB02, WB03, WB05, and WB10) to collect 14-day time-integrated samples. Enthalpy Analytical in Orange, California, a State of California certified laboratory, provided Summa canisters and 14-day flow controllers, and analyzed the Summa canisters for VOCs using USEPA Method TO-15sim. In addition, monitoring of meteorological conditions was performed at WB16 with a Lufft WS600 meteorological monitoring station that was set to record the following every 15 minutes throughout the study period: wind direction, wind speed, air temperature, and absolute air pressure (aka, barometric pressure).

Each 6-liter Summa sample canister was fitted with a vacuum gauge and a flow controller to collect the sample over an approximately 14-day period. Each canister, flow controller, and gauge was individually certified clean by the analytical laboratory. After the canisters were set in the breathing zone in their respective locations, the initial vacuum reading was recorded on field forms. Canisters were confirmed to be at a minimum vacuum of 27-inches of mercury prior to use. After 14 days, the valve on the Summa canister was closed and the final vacuum was measured and recorded. Each canister was labeled appropriately, and a chain-of-custody manifest was completed onsite to accompany the samples to the lab.

The following items were recorded for each sample:

- Sample location (including figure and photographs)
- Canister and flow regulator identification numbers
- Initial vacuum
- Time and date that sample collection began and ended
- Final vacuum.

4.4.2 Findings

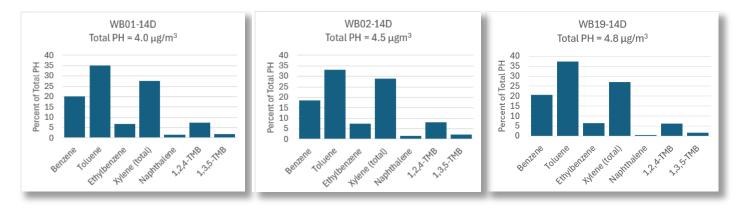
Charts 43 through 48 compare concentrations from October and December 2024 of benzene, toluene, ethylbenzene, xylenes, naphthalene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene. As shown, individual VOC concentrations in December were relatively similar to each other across the four samples including benzene and toluene concentrations. Benzene concentrations ranged from 1.7 to 1.9 $\mu g/m^3$ and toluene concentrations ranged from 3.2 to 3.4 $\mu g/m^3$.

The overall December concentrations are higher than those measured in October, excluding the outliers benzene and toluene at WB05. These results support the conclusion that the concentrations of benzene and toluene measured at WB05 in October were outliers and not representative of outdoor air quality at the WB05 sampling location. These results also indicate that variability in concentrations month over month exists at the Site.

The windrose from WB16 in December 2024 is provided in Chart 49. The dominant wind direction measured (easterly) differed from the October 2024 direction. Chart 50 presents the histogram of the wind speed measured from December 2 to December 16, 2024.

4.5 Petroleum Hydrocarbon Fingerprint

The primary focus of this study is on petroleum-related VOCs and on chlorinated solvents that reportedly might have been a component of some products used during periodic servicing and maintenance of the onsite oil and gas extraction wells. Nevertheless, all VOCs detected in 1-hour, 24-hour, and 14-day samples and are evaluated herein and in the assessment of potential human health risks.


Petroleum related VOCs were routinely measured in all 14-day, 24-hour, and 1-hour air samples: benzene, toluene, ethylbenzene, total xylenes (collectively referred to as BTEX), naphthalene, 1,2,4- trimethylbenzene, and 1,3,5-trimethylbenzene..

The 14-day samples collected in October 2024 revealed just one onsite location, WB13 at 0.08 $\mu g/m^3$, with a measurable concentration of the chlorinated VOC (CVOC) tetrachloroethene (PCE). None of the 24-hour samples contained measurable CVOCs. Four of the fourteen onsite 1-hour samples contained measurable PCE with an average concentration of 0.11 $\mu g/m^3$. For comparison, the average PCE concentration in all MATES V regional data is 0.20 $\mu g/m^3$ and the average PCE concentration at the MATES V Long Beach location was 0.22 $\mu g/m^3$, both above all onsite measurements of PCE.

To evaluate if the distribution of these seven petroleum-related VOCs varied or remained similar regardless of sampling location, the normalized concentrations (as percent of total) of these seven petroleum-related VOCs are plotted and compared. These plots can be considered as fingerprints that graphically depict relative concentrations. Chart 26 displays the fingerprints at all 14 onsite and 3 offsite locations sampled in October 2024, and MATES V all regional data, October 2018 data, and Long Beach October 2018 data. The fingerprints were inspected to identify:

- Obvious differences among the fingerprints in pattern, which would be indicative of source(s) at one or more locations that would alter the fingerprint relative to other locations.
- Obvious similarities among the fingerprints in pattern, which could be indicative of similar conditions at each
 of the locations, such as being dominated by regional air quality conditions.

The three fingerprints depicted here are from WB01, located at the southwest corner upwind from the Site and near the road, at WB02 adjacent to an active oil production well, and the most distant offsite location WB19 that is in a parking lot and more distant from adjacent active roads. The onsite and offsite fingerprints show similar

patterns. Comparing the MATES fingerprint with the onsite fingerprints shows they are comparable.

SECTION 5

Assessment of Human Health Risks

The objective of this assessment of potential human health risks is to evaluate potential human health risks associated with outdoor air quality and future residential land use of the property, which includes a residential apartment building and a Boys & Girls Club recreational facility. As discussed above, the two oil production wells

Assessment of Human Health Risks

40

that were operating during this study will remain active on the property following development. It is important to note here that this assessment of potential human health risks and the findings and conclusions herein are limited to conditions represented by the samples collected during 2 weeks in October 2024.

Because oil and gas operations are the only known historical and current uses of the Site, it would be reasonable to focus this assessment of potential human health risks on VOCs related to petroleum and servicing of the oil production wells, the latter of which reportedly might include CVOCs. Nonetheless, this assessment of potential human health risks provides a full assessment of all detected VOCs in onsite outdoor air.

As discussed above, outdoor air samples were collected at receptor height from 14 locations across the property in October to provide a reasonable estimate of outdoor air exposures to VOC concentrations. Specifically, continuous 14-day air samples and peak 1-hour air samples were collected for the purpose of assessing potential onsite cancer risks and chronic noncancer hazards and onsite acute noncancer hazards, respectively.

It is noted that the air sampling described herein occurred prior to anticipated remediation of elevated VOC concentrations in soil gas, which have been separately investigated and reported to be present at elevated concentrations in the southeastern portion of the Site (Mearns Consulting, 2021). Consequently, it remains possible that following remediation, the outdoor air quality at the Site might improve.

The assessment of potential human health risks provides upper-bound estimates of individual incremental lifetime cancer risk (ILCR)¹ and noncancer hazard for the theoretical Reasonable Maximum Exposure (RME) for adult and child receptors based on exposures to VOCs in outdoor air. The RME approach utilized herein is consistent with DTSC (2015, 2022a,b) and USEPA (1989) human health risk assessment guidance and is a conservative measure that overestimates potential risks USEPA (1989), thus ensuring the protection of public health, including sensitive subpopulations.

The assessment of potential human health risks was conducted following standardized risk assessment methods consistent with DTSC and USEPA risk assessment guidance, including, but not limited to, the following guidance documents, as applicable:

- USEPA. 1987. The Risk Assessment Guidelines of 1986
- USEPA. 1989. Risk Assessment Guidance for Superfund, Volume I, Health Evaluation Manual, Part A
- USEPA. 2009. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment)
- USEPA. 2011. Exposure Factors Handbook: 2011 Edition
- USEPA. 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors
- DTSC. 2015. Preliminary Endanger Assessment Guidance Manual
- DTSC. 2018. California Toxicity Criteria Rule
- USEPA. 2019. Guidelines for Human Exposure Assessment
- DTSC. 2019. Human Health Risk Assessment (HHRA) Note Number 1: Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities
- DTSC. 2022a. Human Health Risk Assessment (HHRA) Note Number 3, DTSC-modified Screening Levels (DTSC-SLs)
- DTSC. 2022b. Human Health Risk Assessment (HHRA) Note Number 4: Guidance for Screening Level Human Health Risk Assessments

-

¹ Throughout this report "ILCR" and "cancer risk" have the same meaning and are used interchangeably.

USEPA (2024) Regional Screening Levels (RSLs). November.

Consistent with DTSC and USEPA risk assessment guidelines, the assessment of potential human health risks is organized as follows:

- Exposure Assessment
- Toxicity Assessment
- Risk Characterization.

5.1 Exposure Assessment

Exposure Assessment is the process of quantitatively characterizing exposure concentrations and potential human intake (e.g., dose). Exposure assessment results are subsequently integrated with toxicity information from the Toxicity Assessment (Section 5.2) into the Risk Characterization (Section 5.3) to assess potential health risks.

The Exposure Assessment comprises the following components:

- Selection of chemicals of potential concern (COPCs)
- Data useability evaluation for risk assessment
- Identification of human receptors
- Exposure pathways analysis and development of a Conceptual Site Model (CSM)
- Derivation of Exposure Point Concentrations (EPCs)
- Summarize human exposure factors.

5.1.1 Selection of Chemicals of Potential Concern (COPCs)

For this assessment of potential human health risks, any VOC detected in at least one onsite 14-day outdoor air sample or in at least one onsite 1-hour outdoor air sample was selected as a COPC. The TO-15sim analytical method applied to the 14-day outdoor air samples comprised 48 VOCs, of which 21 VOCs were detected in at least one sample of outdoor air. The TO-15sim analytical method applied to the 1-hour air samples comprised 30 VOCs, of which 16 VOCs were detected in at least one sample.

For the 14-day air samples, in total, 7 petroleum-related VOCs were detected and selected as COPCs, and 14 non-petroleum-related VOCs were detected and selected as COPCs. The 7 petroleum-related VOCs are benzene, toluene, ethylbenzene, total xylenes, naphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. For the 1-hour air samples, in total, 7 petroleum-related VOCs were detected and selected as COPCs, and 9 non-petroleum-related VOCs were detected and selected as COPCs.

5.1.2 Data Usability Evaluation

The purpose of the data useability evaluation is to ensure that the analytical data collected and used for the assessment of potential human exposure are of sufficient quality with respect to sample size and analytical detection limits. As detailed below, both the number of samples (sample size) and data quality are sufficient for the assessment of potential human health risks.

For the chronic 14-day outdoor air sample data set, a total of 14 onsite samples were collected, which is a sufficient sample size for calculating EPCs (USEPA 2022). All petroleum-related VOCs selected as COPCs were detected in each of the 14 onsite samples with the exception of naphthalene which was detected in 10 of 14 samples. The

maximum reporting limit (RL) for naphthalene of $0.058 \, \mu g/m^3$ is lower than the lowest DTSC (2022a) residential air screening level (SL) of $0.083 \, \mu g/m^3$. Therefore, it is concluded that sample size and detection limits for onsite COPCs are sufficient for assessing chronic exposures in the assessment of potential human health risks.

For VOCs not selected as COPCs (e.g., not detected in any sample), RLs were lower than screening levels for all VOCs with the exception of 1,1,2,2-tetrachloroethane, 1,2-dibromoethane, benzyl chloride, bromodichloromethane, and vinyl chloride for which RLs exceeded either DTSC (2022a) SLs or USEPA (2024) RSLs. However, since these VOCs were never detected in any 1-hour, 24-hour, or 14-day onsite outdoor air sample it is reasonable to conclude that these VOCs were not present at detectable concentrations in outdoor air at the Site in October 2024.

For the acute 1-hour outdoor air sample data set, a total of 13 onsite samples were collected, which is a sufficient sample size for calculating EPCs (USEPA 2022). In contrast to the 14 14-day onsite air samples discussed above, there are only 13 1-hour air samples as the WB07 Summa cannister was depressurized when received by the analytical laboratory, and therefore, did not contain an air sample. The cause is unknown. In addition, the analytical laboratory used for the acute 1-hour samples does not report results for 1,2,4-trimethylbenzene or 1,3,5-trimethylbenzene. For VOCs not selected as COPCs (e.g., not detected in any sample), all RLs were lower than available screening levels. The one missing sample and the absence of 1-hour sample results for 1,2,4-trimethylbenzene or 1,3,5-trimethylbenzene are expected to not impact the outcome of the assessment of potential human health risks.

5.1.3 Exposure Pathways Analysis and Development of the Conceptual Site Model (CSM)

The ultimate goal of the Exposure Pathways Analysis is to identify those potential exposure pathways to outdoor air that would be considered complete exposure pathways for the quantitative assessment of potential human health risks based on future land use, identification of future human receptors, identification of sources of contamination and receiving media, chemical fate and transport in receiving media, and identification of exposure points and exposure routes (USEPA 1989).

Based on the planned future land use of the property (residential), the following exposure pathways are anticipated to become present:

- The human receptors expected to be present on the property following future development are residential adults and children as well as adults and children using the planned Boys & Girls Club.
- Sources of potential contamination to outdoor air following development are expected to be the two active
 and two idle oil and gas wells whereby VOCs may be released to the outdoor air during continuous operation
 and periodic servicing of these wells. In addition, residual VOCs in subsurface soils (e.g., soil gas) following
 remediation may also be released to the outdoor air.
- The primary chemical fate and transport process is dispersion within outdoor air of such potential emissions, if any, which would cause concentrations to reduce with increased distance from the point of release.
- Human exposure points for short term acute exposure (i.e. 1 hour) may be any discreet location on the property and would be represented by the maximum detected concentration of each identified COPC.
- Human exposure points for long term chronic exposure may be all accessible locations on the property and would be represented by the 95% upper confidence limit on the mean (95% UCL) concentration of each identified COPC across the Site.

The Exposure Pathways Analysis is summarized in the Conceptual Site Model (CSM) presented in Figure 5.

5.1.4 Exposure Point Concentrations

Consistent with DTSC (2015) and USEPA (1989) risk assessment guidance, EPCs for chronic exposures are estimated as the site-wide 95% UCL 14-day outdoor air concentration for each COPC as measured at all 14 onsite locations. 95% UCLs are estimated herein using USEPA (2022) ProUCL ver. 5.2 software. Exceptions for benzene and toluene are the exclusion of the benzene outlier of 3.2 μ g/m³ and the toluene outlier of 5.8 μ g/m³, both measured at WB05, from the 95% UCL calculations. As discussed in Section 4.4 both outliers are considered to be not representative of Site conditions.

EPCs for acute exposures are the maximum 1-hour maximum outdoor air concentration for each COPC measured at any one of the 14 onsite sample locations. The chronic 14-day EPCs and the acute 1-hour maximum EPCs for each COPCs are summarized in the risk characterization tables presented in the Risk Characterization section. The ProUCL outputs are presented in Appendix D.

5.1.5 Human Exposure Factors

The human exposure factors applicable to the inhalation exposure pathway for adults and children are those embedded within the DTSC (2022a) SLs, which are consistent with the residential human exposure factors recommended by DTSC (2019) exposure factor guidelines and consistent with those embedded within the USEPA (2024) RSLs. The key chronic residential exposure factors are exposure time of 24 hours/day, exposure frequency of 350 days/year, and exposure duration of 20 years for adults and 6 years for children. For acute exposures the only applicable exposure factor is the exposure time of 1 hour.

5.2 Toxicity Assessment

Toxicity Assessment is the process of assessing the relationship between human intake of a chemical (e.g., dose) and the corresponding toxic response. This process is also known as dose-response assessment. The results of the dose-response assessment are generally referred to as toxicity values. Over the past 30 years, dose-response assessments have been routinely performed by State and Federal regulatory agencies that publish toxicity values for various types of health effects and exposure pathways.

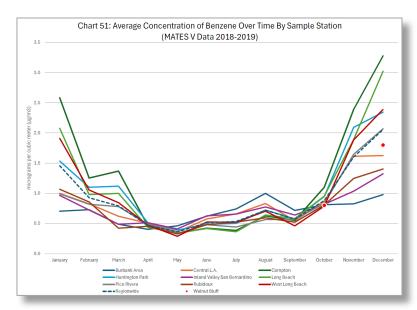
Consistent with the approach used in this assessment of potential human health risks for the Exposure Assessment, the chronic noncancer- and cancer-based toxicity values used are embedded within the DTSC (2022a) SLs and USEPA (2024) RSLs. Preferentially using DTSC (2022a) SLs and secondarily USEPA (2024) RSLs ensures compliance with the DTSC (2018) Toxicity Criteria Rule.

For assessing 1-hour acute exposures, acute toxicity values were obtained from multiple sources when available. The preferred source of acute toxicity values is OEHHA's acute Reference Exposure Levels (RELs). For COPCs without OEHHA acute RELs, the USEPA's Acute Exposure Guideline Levels (AEGLs; USEPA 2019) are the next preferred source, and in the absence of either acute RELs or AEGLs, then the U.S. Department of Energy (USDOE) Protective Action Criteria (PAC; USDOE 2018) are selected as acute toxicity values. For two COPCs (naphthalene and tetrachloroethene) acute toxicity values were not available from any of these sources but were available from the Minnesota Department of Health as acute Air Guidance Values (AGVs).

As with the exposure parameters described above in Section 5.1.3, the toxicity values described in this Section are also presented in the risk characterization tables in Section 5.3.

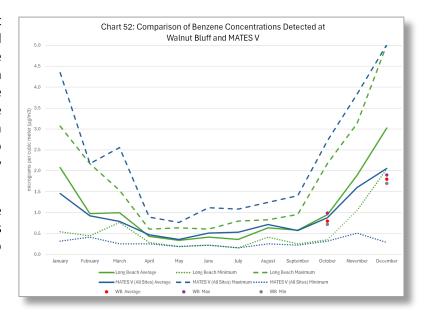
5.2.1 MATES V – Summary Description

To date, the SCAQMD has evaluated and reported regional air quality in the Los Angeles basin in five separate studies, entitled Multiple Air Toxics Exposure Study (MATES). The four most recent MATES studies occurred during 1998-1999 (MATES II), 2005 (MATES III), 2012-2013 (MATES IV), and 2018-2019 (MATES V). The most recent study, MATES V, was performed between May 2018 and April 2019 and consisted of monitoring air quality at ten different locations by collecting a total of 528 samples, consisting of approximately 50 to 60 samples per location. The nearest MATES V sampling location is the Long Beach monitoring location, at 1710 East 20th Street in Signal Hill, 1 mile south of Walnut Bluff.


Unlike conventional risk assessments, which utilize the 95% UCL to estimate risks, MATES V assessed risk by using the average concentrations. It is recognized that the MATES V study and findings predate the study reported herein by 6 years. Another important difference is that the MATES V study collected samples approximately every 6 weeks over the course of 12 months. In contrast, this Report presents results and calculates risk based on a single sampling event covering two weeks in October 2024.

Nonetheless, the MATES V study is considered herein to be the most comprehensive and relevant assessment of risk posed by outdoor air quality to human health in the region. Therefore, the findings from the MATES V study are used here to compare with the findings from this study and to evaluate if potential additional human health risks are posed to human health by outdoor air at the Site.

5.2.2 MATES V – Data Trends


As described above, samples of outdoor air at the Site were collected in October and December 2024. The concentrations of VOCs measured in December were generally higher than concentrations measured in October.

The adjacent Chart 51 shows the average MATES V benzene concentration by monitoring station and the region along with the average benzene concentration measured at the Site. The chart shows that the Site data are comparable with the trends revealed in the MATES V data.

To further assess these trends, the adjacent Chart 52 shows the maximum, average, and concentrations minimum οf benzene measured at the nearby MATES V Long Beach station, the regional MATES V data, and Site data. Similar to the preceding chart, the maximum, average, and minimum concentrations measured at the Site are also comparable with, and in some cases slightly lower than, the MATES V data.

Taken together, these charts indicate that the increase trend in on-Site concentrations measured in December are comparable to increase trends revealed in the MATES V data.

5.3 Risk Characterization

Risk Characterization is the process of integrating exposure and toxicity information to characterize potential health risks. Under this process, chronic cancer risks are estimated for individual carcinogens, and the total risk from all carcinogens combined, referred to as the cumulative cancer risk, is then calculated by summing the cancer risks for all carcinogenic COPCs.

A similar process is employed for chronic and acute noncancer hazards whereby chronic and acute noncancer hazards are estimated for individual COPCs, referred to as Hazard Quotients (HQs), and cumulative noncancer hazard, referred to as the Hazard Index (HI), is then calculated by summing the individual chronic and acute noncancer HQs, respectively.

5.3.1 Cancer Risk and Noncancer Hazard Calculations and Equations

The equations used to calculate cancer risk, chronic HQs, and acute HQs are as follows:

ILCR = EPCc / SLc x $1x10^{-6}$

Where,

ILCR = Incremental Lifetime Cancer Risk (unitless)

EPCc = chronic EPC

defined herein as the 95% UCL air concentration ($\mu g/m^3$) based on 14-day continuous onsite air monitoring data

SLc = cancer-based screening level ($\mu g/m^3$)

Chronic HQ = EPCc / SLnc

Where,

Chronic HQ = Chronic Hazard Quotient (unitless)

EPCc = chronic EPC

defined herein as the 95% UCL air concentration (µg/m³) based on 14-day continuous onsite air monitoring data

SLnc = noncancer-based screening level (μg/m³)

Acute HQ = EPCa / AREL

Where,

Acute HQ = Acute Hazard Quotient (unitless)

EPCa = acute EPC

defined herein as the maximum 1-hour air concentration (µg/m³)

AREL = Acute Reference Exposure Level (µg/m³)

Cumulative cancer, non-cancer hazard, and acute risks:

Cumulative ILCR = Σ ILCR for individual carcinogenic COPCs

Chronic HI = Σ chronic HQs for individual COPCs

Acute HI = Σ acute HQs for individual COPCs

Potential cancer risks, chronic noncancer hazards and acute noncancer hazards associated with measured onsite outdoor air VOC concentrations are presented in Tables 5 and 6, respectively, and summarized below. Potential cancer risks and chronic noncancer hazards associated with measured offsite outdoor air VOC concentrations are presented in Table 7 and summarized below. For perspective and transparency, risk assessment findings are presented separately for petroleum-related COPCs, non-petroleum-related COPCs, and all COPCs combined.

While the standard default comparison threshold for cancer risk is 1×10^{-6} (ATSDR 2024) and DTSC, the USEPA (1994) National Contingency Plan (NCP) defines the range of acceptable cancer risks as 1×10^{-6} to 1×10^{-4} . However, the NCP explains that the point of departure for screening risks is 1×10^{-6} , such that regulatory approval of risks up to 1×10^{-4} requires a Site-specific risk assessment or some other technically defensible justification, such as background or regional conditions. Falling within this range is the SCAQMD Air Toxics Hotspots threshold of 1×10^{-4} , which also characterizes the regional risks posed by outdoor air quality as reported in MATES V (SCAQMD, 2021).

5.3.2 Incremental Lifetime Cancer Risks

For individual petroleum-related COPCs, estimated onsite cancer risks ranged from 2.8×10^{-7} to 8.6×10^{-6} . Benzene, with an ILCR of 8.6×10^{-6} , is the only petroleum-related COPC exceeding the default cancer risk threshold of 1×10^{-6} (Table 5). The onsite cumulative cancer risk for petroleum-related COPCs was 1.0×10^{-5} , which exceeds the default cancer risk threshold of 1×10^{-6} , but is less than the SCAAQMD Air Toxics Hotspots threshold of 1×10^{-4} . As described further below, this level of risk from outdoor onsite air is comparable to the regional risks in the MATES V study.

In the absence of benzene, the onsite cumulative risk associated with petroleum-related COPCs is 1.3x10⁻⁶. This clearly demonstrates that benzene is the only significant driver of petroleum-related VOCs. This discussion is also focused on benzene because benzene is the one petroleum-related "risk driver" COPC measured in both onsite outdoor air samples, offsite outdoor air samples, and the MATES regional monitoring studies.

For individual non-petroleum-related COPCs, estimated cancer risks ranged from 1.7×10^{-7} to 2.3×10^{-6} . The non-petroleum-related COPCs exceeding the default cancer risk threshold of 1×10^{-6} were trichlorofluoromethane with an ILCR of 2.3×10^{-6} , chloroform with an ILCR of 1.3×10^{-6} , and methylene chloride with an ILCR of 1.1×10^{-6} . The cumulative cancer risk for non-petroleum-related COPCs was 5.9×10^{-6} .

The cumulative cancer risk for all COPCs, petroleum-related hydrocarbons and non-petroleum-related hydrocarbons, combined was 1.6x10⁻⁵.

5.3.3 Chronic Noncancer Hazards

For individual petroleum-related COPCs, chronic noncancer HQs ranged from $3.1x10^{-4}$ for ethylbenzene to $0.27x10^{-1}$ for benzene all below the target chronic noncancer HQ of 1 (Table 5). The cumulative chronic noncancer HI for petroleum-related COPCs was $3.2x10^{-1}$, well below the target chronic noncancer HI of 1.

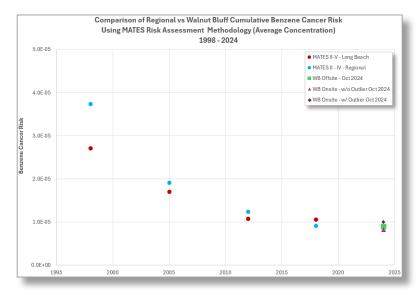
For individual non-petroleum-related COPCs, chronic noncancer HQs ranged from 1.4x10⁻⁵ for chloroethane to 5.3x10⁻¹ for trichlorofluoromethane all below the target chronic noncancer HQ of 1. The cumulative chronic noncancer HI for non-petroleum-related COPCs was 0.67, well below the target chronic noncancer HI of 1.

The cumulative noncancer HI for all COPCs, petroleum-related hydrocarbons and non-petroleum-related hydrocarbons, combined was 0.99, equivalent to the target chronic noncancer HI of 1.

5.3.4 Acute Noncancer Hazards

For individual petroleum-related COPCs, acute noncancer HQs ranged from $5.7x10^{-6}$ for ethylbenzene to $7.0x10^{-2}$ for benzene, all below the target acute noncancer HQ of 1 (Table 6). The cumulative acute noncancer HI for petroleum-related COPCs was $7.4x10^{-2}$, well below the target acute noncancer HI of 1.

For individual non-petroleum-related COPCs, acute noncancer HQs ranged from 5.5×10^{-7} for 1,2-dichloroethane to 1.8×10^{-3} for chloroform all below the target acute noncancer HQ of 1. The cumulative acute noncancer HI for non-petroleum-related COPCs was 2.1×10^{-3} , well below the target acute noncancer HI of 1.


The cumulative noncancer HI for all COPCs, petroleum-related hydrocarbons and non-petroleum-related hydrocarbons, combined was 0.076, also well below the target acute noncancer HI of 1.

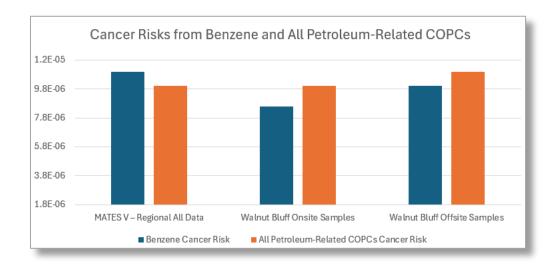
5.3.5 Comparison of Onsite, Offsite, and Regional MATES V Benzene Cancer Risks

The focus of this discussion is on benzene because benzene is the "driver" for onsite petroleum-related COPC cancer risks of $1.0x10^{-5}$, which exceeds the $1x10^{-6}$ default cancer risk threshold (Table 5).

Charts 33 through 37 compare the estimated cancer risk posed by benzene, toluene, ethylbenzene, total xylenes, and naphthalene onsite and offsite with risk provided in MATES II, II, III, IV, and V for the region and at the Long Beach location. The chart for benzene, is provided here.

As shown in these Charts and in Table 8, regional outdoor air benzene concentrations and corresponding cancer risk estimates decreased over time from 1998-1999 to 2005 to 2012-2013 to 2018-2019, respectively, and corresponding cancer risk estimates from 4.2x10⁻⁵ to 1.7x10⁻⁵ to 1.1x10⁻⁵, respectively.

It is important to note here that the MATES studies calculate cancer risk using average concentration, whereas USEPA and DTSC require the calculation of estimated risk to be based on the 95% UCL. However, for comparison purposes only, Charts 33 through 37 present risk based on average concentrations at the Site Walnut Bluff.


By definition, the arithmetic average concentration is always less than the 95% UCL (USEPA 2022). Therefore, the risks calculated using the 95% UCL of the Walnut Bluff study data should be considered more conservative than cancers risk based on MATES average concentrations. And by extension, comparisons of cancer risks between this study and the MATES data are also conservative. Were this study to assess cancer risk using the arithmetic average (an approach that does not comport with DTSC nor USEPA protocol), then this assessment of potential human health risks would conclude cancer risks lower than presented, and likely lower than the regional cancer risks presented in MATES V.

The most recent regional monitoring cancer risk estimates associated with 95% UCL benzene is comparable to the offsite outdoor air cancer risk estimates (1.0×10^{-5}) or the onsite outdoor air cancer risk estimate (8.6×10^{-6}) .

A more granular version of the above information depicts concentrations measured at each onsite and offsite Walnut Bluff sampling location with MATES V regional and Long Beach data are provided in Charts 38 through 42. Collectively, these data show that overall concentrations, and by extension risks and hazards, measured in this Walnut Bluff study are also comparable to the MATES V study.

For the purpose of comparing onsite and offsite cancer risk estimates, cancer risks for petroleum-related COPCs were also calculated for the offsite sampling locations. Since there were only 3 offsite sampling locations, there was an insufficient sample size for calculating a 95% UCL. As such, cancer risk estimates for offsite outdoor air samples were conservatively based on the maximum detected concentrations. Calculations presented in Table 7 show that the cumulative cancer risk associated with petroleum-related COPCs in offsite outdoor air is 1.1x10⁻⁵, approximately the same as the cumulative cancer risk associated with petroleum-related COPCs in onsite outdoor air of 1.0x10⁻⁵.

	Benzene	All Petroleum-Related
Scenario	Cancer Risk	COPCs Cancer Risk
MATES V – Regional All Data	1.1E-05	1.0E-05
Walnut Bluff Offsite Samples	1.0E-05	1.1E-05
Walnut Bluff Onsite Samples	8.6E-06	1.0E-05

5.4 Discussion of Findings and Uncertainties

The Walnut Bluff outdoor air sampling study was specifically designed to collect appropriate data for assessing potential acute and chronic human exposures, specifically maximum 1-hour concentrations of VOCs and continuous 14-day concentrations of VOCs, respectively. Although any VOC detected in any sample was selected as a COPC, the focus of the assessment of potential human health risks is on current and historical land use (e.g., operation of oil and gas wells). As such, individual COPC and cumulative acute hazards, chronic hazards, and cancer risks are presented in prior sections for petroleum-related COPCs and non-petroleum-related COPCs.

For petroleum-related and non-petroleum COPCs combined, all individual acute HQs and cumulative acute HIs are well below the target HQ and HI of 1.0. All individual chronic HQs as well as petroleum-related and non-petroleum-related cumulative chronic HIs are also below the target HQ and HI of 1.0. The chronic HI for petroleum-related and non-petroleum-related COPCs combined is 0.99, slightly less than the target HI of 1.

The default cancer risk threshold of $1x10^{-6}$ for petroleum-related COPCs, non-petroleum related VOCs, and all COPCs is exceeded in the onsite 14-day outdoor air samples, the offsite 14-day outdoor samples, and also the MATES V study. The range of cumulative petroleum-related cancer risks is relatively small, from $1.0x10^{-5}$ to $1.5x10^{-5}$. The onsite, offsite, and regional (MATES V) benzene concentrations and corresponding cancer risk estimates from all VOCs are comparable.

As noted above in Section 5.2.1, there are important differences between the MATES V study and this Walnut Bluff study. Nonetheless, the MATES V study is considered to be the most comprehensive and relevant assessment of risk posed by outdoor air quality in the region and is used herein to compare with the findings from this study and assessment of potential human health risks posed by outdoor air at the Site.

Although uncertainty is inherent to the risk assessment process, the decisions made in the risk assessment process are biased towards the protection of human health. The key areas of uncertainty generally include (1) exposure assumptions, (2) toxicity data extrapolations, and (3) risk calculations based on the 95% UCL and not the arithmetic average. It is generally recognized that these uncertainties result in the over-estimation of health risk, thus ensuring the protection of human health.

SECTION 6

Conclusions

The following key conclusions are based on the findings presented above:

- In summary, the onsite air quality measured in October 2024 poses no additional measurable risk to human health compared with offsite and regional conditions, and the outdoor air quality measured at the Site is comparable to regional air quality conditions characterized by the MATES V study.
- The study was implemented as designed and the few minor deviations are considered to have not materially affected the data nor the findings.
- The 14-day analytical results and risks based on the onsite samples and offsite samples are comparable to the risks presented in the MATES V regional data.
- The concentrations of petroleum-related hydrocarbons measured in the onsite 14-day samples collected in October 2024 and MATES V samples collected between May 2018 and April 2019 are comparable.
- The onsite cumulative cancer risk for petroleum-related COPCs was 1.0x10⁻⁵, which exceeds the default cancer risk threshold of 1x10⁻⁶, but is less than the SCAAQMD Air Toxics Hotspots threshold of 1x10⁻⁴. This level of risk from outdoor onsite air is comparable to the regional risks in the MATES V study.
- Concentrations in the 1-hour samples typically exceed concentrations measured in the 14-day samples. This
 means that the 1-hour sampling interval identified based on the PID data accurately identified the daytime
 period associated with higher concentrations. The assessment of potential human health risks demonstrates
 that the higher concentrations measured in the 1-hour samples do not pose an acute noncancer hazard.
- Benzene and toluene in the October 14-day air sample collected at WB05 are statistical outliers. The source of these concentrations is unknown, but based on the entirety of the data, they are considered unrepresentative of onsite conditions.
 - A second deployment of 14-day sampling occurred in December 2024 at 4 sampling locations including WB05. The individual VOC concentrations, including benzene and toluene, measured in the 4 December samples were relatively similar. Therefore, the December data provide further indication that the concentrations of benzene and toluene measured at WB05 in October were merely outliers and not indicative of a source at the sampling location. Consequently, it is appropriate to exclude the outliers from the estimates of onsite risk.
- The concentrations of petroleum hydrocarbons measured in the 14 onsite 14-day samples and 3 offsite 14-day samples are similar, which indicates that onsite risks and offsite risks are similar. It is important to recognize that the land use of both the onsite and offsite are similar and consist of SHP properties with active oil and gas operations.
- The increase in on-Site concentrations measured from October to December are comparable to monthly increases revealed in the MATES V data.
- The Final MATES V report documents a decrease of 40% in cumulative cancer risk from MATES IV. However, the Final MATES V report also shows that between MATES IV and MATES V, benzene concentrations reduced

by only 10% indicating that the 30% of the decrease in cumulative cancer risk between MATES IV and MATES V was due largely to the decrease in carcinogenic VOCs unrelated to petroleum. Therefore, assuming no significant changes to petroleum-related hydrocarbons in the regional air quality has occurred since the MATES V study was performed (which could be evaluated by others once the pending Mates VI study is published), it is reasonable to conclude that the Site not a significant source of additional:

- measurable concentrations of petroleum-related hydrocarbons
- measurable cumulative cancer risk due to petroleum-related hydrocarbons
- acute noncancer hazard due to petroleum-related hydrocarbons.
- cumulative chronic noncancer hazard due to petroleum-related hydrocarbons.
- It is important to note here that this assessment of potential human health risks is based solely on samples collected at the Site during 2 weeks in October 2024. The onsite data collected in October and December 2024 reveal seasonal variability at the Site that is comparable to the MATES V data.

SECTION 7

References

ATSDR. 2024. Public Health Assessment Guidance Manual (PHAGM). Agency for Toxic Substances and Disease Registry.

Catalyst. 2024. Workplan for Human Health Risk Assessment Proposed Walnut Bluff Development.

DTSC. 2015. Preliminary Endanger Assessment Guidance Manual. Department of Toxic Substances Control. October.

DTSC. 2018. Toxicity Criteria Rule. September 4. Department of Toxic Substances Control. 22 CA ADC § 68400.5.

DTSC. 2019. Human Health Risk Assessment (HHRA) Note Number 1: Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. Department of Toxic Substances Control. April 9.

DTSC. 2022a. Human Health Risk Assessment (HHRA) Note Number 3, DTSC-modified Screening Levels (DTSC-SLs). Department of Toxic Substances Control. May.

DTSC. 2022b. Human Health Risk Assessment (HHRA) Note Number 4: Guidance for Screening Level Human Health Risk Assessments. Department of Toxic Substances Control. March 29.

Mearns Consulting. 2021. Human Health Risk Assessment, Northwest Corner E. Willow St. and Walnut Avenue, Walnut Bluff, Signal Hill, California. Mearns Consulting LLC. June 16.

SCAQMD. 2021. Multiple Air Toxics Exposure Study V (MATES V). South Coast Air Quality Management District. August.

USEPA. 1994. National Oil and Hazardous Substances Pollution Contingency Plan (NCP). CFR40 Chapter I Subchapter J Part 300.

USEPA. 1998. Linear Low dose Extrapolation for Cancer Risk Assessments: Sources of Uncertainty and How They Affect the Precision of Risk Estimates. Scientific Advisory Panel (SAP) Meeting. July.

USEPA. 1989. Risk Assessment Guidance for Superfund, Volume I, Health Evaluation Manual, Part A. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. December.

USEPA. 2000. Guidance of Data Quality Assessment, Practical Methods of Data Analysis, EPA QA/G-9. July.

USEPA. 2002. Calculation UIPper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Site. December.

USEPA. 2022. ProUCL Version 5.2.0 Technical Guide. U.S. Environmental Protection Agency, Office of Research and Development.

USEPA. 2024. Regional Screening Levels (RSLs). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. November.

Tables

Table 2 1 Hour Ambient Air Samples Proposed Walnut Bluff Development - City of Signal Hill, CA

				- 1	seu wa			•		1	0	, -					
Sample ID	Date	Time	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1-Difluoroethane	1,2-Dichloroethane	1,4-Dichlorobenzene	Benzene	Carbon tetrachloride	Chloroform	Dichlorodifluoromethane	Ethylbenzene	Naphthalene	o-Xylene	p- & m-Xylenes	Tetrachloroethene	Toluene	Trichlorofluoromethane
									µg/n	า3							
	DTSC SLo						0.1	0.47			-		-	-	0.46	-	
	DTSC SLnc	O					3.1	42			-				42	310	1300
	RSLs C				0.11	0.26	0.36	0.47	0.12		1.1	0.08			11		
	RSLs NC		5200	42000	7.3	830	31	100	2	100	1000	3.1	100	100	42	5200	
WB01-1H	10/9/2024	9:00 - 9:59	0.53	1.1	0.11	0.09	1.8	0.5	0.25	2.3	0.57	0.22	0.65	2	<0.1	2.8	1.2
WB02-1H	10/9/2024	10:31 - 11:31	0.52	1.1	0.093	0.12	1.4	0.49	0.27	2.3	0.75	0.29	0.86	2.6	0.081	2.8	1.2
WB03-1H	10/9/2024	10:35 - 11:33	0.52	1.1	0.093	0.11	1.4	0.5	0.23	2.3	0.81	0.20	0.91	2.8	0.09	2.6	1.2
WB04-1H	10/9/2024	10:47 - 11:46	0.52	1.2	0.091	0.1	1.4	0.5	0.23	2.3	0.74	0.17	0.82	2.5	<0.1	2.6	1.2
WB05-1H	10/9/2024	11:06 - 12:08	0.52	1.1	0.092	0.093	1.3	0.5	0.2	2.3	0.58	0.38	0.64	1.8	<0.1	2.3	1.2
WB06-1H	10/9/2024	10:43 - 11:42	0.52	1.2	0.093	0.1	1.4	0.49	0.23	2.3	0.66	0.23	0.74	2.2	<0.1	2.6	1.2
WB07-1H	10/9/2024	8:36 - 9:42				Ca	n arrive	d evacu	ated and	d could	d not be	e analyz	zed.				
WB08-1H	10/9/2024	11:11 - 12:11	0.53	1.1	0.088	0.086	1.4	0.5	0.21	2.3	0.56	0.16	0.62	1.7	<0.1	2.6	1.3
WB09-1H	10/9/2024	11:22 - 12:24	0.53	1	0.086	0.093	1.3	0.5	0.22	2.4	0.72	0.34	0.9	2.4	<0.1	2.7	1.3
WB10-1H	10/9/2024	11:17 - 12:20	0.52	1.1	0.089	0.1	1.8	0.51	0.22	2.4	0.61	0.25	0.64	1.9	<0.1	7.2	1.3
WB11-1H	10/9/2024	11:52 - 12:51	0.52	0.89	0.1	0.11	1.8	0.5	0.19	2.3	0.67	0.31	0.75	2.1	0.077	2.8	1.3
WB12-1H	10/9/2024	11:58 - 12:58	0.53	1.7	0.1	0.085	1.7	0.5	0.2	2.4	8.0	0.30	0.92	2.6	0.072	3	1.3
WB13-1H	10/9/2024	9:10 - 10:09	0.52	0.98	0.11	0.093	1.9	0.5	0.22	2.3	0.57	0.24	0.65	1.9	<0.1	2.9	1.2
WB14-1H	10/9/2024	9:18 - 10:19	0.52	0.99	0.11	0.097	1.9	0.5	0.24	2.3	0.58	0.23	0.68	2	<0.1	3.2	1.2
WB17-1H	10/9/2024	13:30 - 14:37	0.53	0.67	0.07	0.08	0.88	0.5	0.19	2.4	0.61	0.18	0.67	2	0.074	1.7	1.3
WB18-1H	10/9/2024	13:52 - 14:56	0.53	8.0	0.073	0.092	1.1	0.5	0.2	2.4	0.52	0.13	0.56	1.5	0.12	2.5	1.3
WB19-1H	10/9/2024	9:52 - 10:54	0.54	1.1	0.11	0.091	1.6	0.5	0.23	2.4	0.69	0.77	0.78	2.4	< 0.1	2.8	1.2

Notes:

SLc - - DTSC (May 2022) HHRA Note 3 residential air screening level for carcinogenic effects unless otherwise specified.

SLnc - DTSC (May 2022) HHRA Note 3 residential air screening level for noncancer effects unless otherwise specified.

RSLs C- USEPA (May 2024) Regional Screening Levels for residential air carcinogenic

RSLs NC- USEPA (May 2024) Regional Screening Levels for residential air Noncarcinogenic

 $\mu\text{g/m3}$ - micrograms per cubic meter

highlighted where above screening criteria

Table 3 24 Hour Ambient Air Samples

Proposed Walnut Bluff Development - City of Signal Hill, CA

							it - Cit								
Sample ID	Date	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1-Difluoroethane	1,2-Dichloroethane	1,4-Dichlorobenzene	Benzene	Carbon tetrachloride	Chloroform	Dichlorodifluoromethane	Ethylbenzene	Naphthalene	o-Xylene	p- & m-Xylenes	Toluene	Trichlorofluoromethane
			1					μg/m3	3						
	TSC SLc					0.097	0.47								
	SC SLnc					3.1	42							310	1300
	SLs C			0.11	0.26	0.36	0.47	0.12		1.1	0.083				
	SLs NC	5200	42000	7.3	830	31	100	2	100	1000	3.1	100	100	5200	
WB01-24H	10/9 - 10/10/2024	0.52	0.43	0.07	< 0.050	0.74	0.47	0.15	2.30	0.29	0.21	0.32	0.94	1.30	1.20
WB02-24H	10/9 - 10/10/2024	0.50	0.44	0.07	0.08	0.88	0.46	0.17	2.30	0.36	0.43	0.38	1.00	1.90	1.20
WB03-24H	10/9 - 10/10/2024	0.52	0.48	0.06	< 0.050	0.70	0.48	0.17	2.40	0.25	0.16	0.29	0.79	1.20	1.20
WB04-24H	10/9 - 10/10/2024	0.52	0.45	0.07	< 0.050	0.85	0.48	0.15	2.30	0.28	0.18	0.33	0.93	1.40	1.20
WB05-24H	10/9 - 10/10/2024	0.52	0.45	0.07	< 0.050	0.91	0.49	0.15	2.30	0.39	0.19	0.50	1.40	2.00	1.20
WB06-24H	10/9 - 10/10/2024	0.52	0.42	0.07	< 0.050	0.68	0.48	0.16	2.30	0.25	0.14	0.28	0.82	1.20	1.20
WB07-24H	10/9 - 10/10/2024	0.51	0.45	0.06	< 0.050	0.71	0.47	0.16	2.30	0.25	0.14	0.27	0.75	1.20	1.20
WB08-24H	10/9 - 10/10/2024	0.52	0.43	0.07	< 0.050	0.69	0.48	0.14	2.30	0.26	0.15	0.29	0.80	1.20	1.20
WB09-24H	10/9 - 10/10/2024	0.53	0.42	0.07	< 0.050	0.86	0.49	0.32	2.30	0.38	0.17	0.49	1.40	1.80	1.20
WB10-24H	10/9 - 10/10/2024	0.52	0.43	0.07	< 0.050	1.10	0.48	0.15	2.30	0.47	0.28	0.41	1.40	1.70	1.20
WB11-24H	10/9 - 10/10/2024	0.52	0.44	0.07	< 0.050	0.69	0.49	0.14	2.40	0.27	0.12	0.29	0.85	1.20	1.20
WB12-24H	10/9 - 10/10/2024	0.52	0.44	0.07	<0.050	0.73	0.49	0.15	2.20	0.27	0.17	0.32	0.89	1.30	1.20
WB13-24H	10/9 - 10/10/2024	0.53	0.44	0.07	<0.050	0.72	0.49	0.17	2.30	0.26	0.15	0.29	0.79	1.20	1.20
WB14-24H	10/9 - 10/10/2024	0.53	0.43	0.07	<0.050	0.73	0.49	0.15	2.20	0.24	0.13	0.27	0.77	1.30	1.20
WB17-24H	10/9 - 10/10/2024	0.52	0.47	0.07	<0.050	0.92	0.50	0.15	2.20	0.34	0.22	0.40	1.10	2.20	1.20
WB18-24H	10/9 - 10/10/2024	0.52	0.48	0.07	<0.050	0.94	0.49	0.14	2.20	0.51	0.21	0.64	1.90	2.10	1.20
WB19-24H	10/9 - 10/10/2024	0.51	0.45	0.08	<0.050	1.10	0.49	0.14	2.30	0.33	0.16	0.36	1.10	1.50	1.20

Notes:

SLc - - DTSC (May 2022) HHRA Note 3 residential air screening level for carcinogenic effects unless otherwise specified.

SLnc - DTSC (May 2022) HHRA Note 3 residential air screening level for noncancer effects unless otherwise specified.

RSLs C- USEPA (May 2024) Regional Screening Levels for residential air carcinogenic

RSLs NC- USEPA (May 2024) Regional Screening Levels for residential air Noncarcinogenic

µg/m3 - micrograms per cubic meter

highlighted where above screening criteria

Table 4

2 Week Ambient Air Samples

Proposed Walnut Bluff Development - City of Signal Hill, CA

										•	osca v				•									
Sample ID	Date	1,2,4-Trimethylbenzene	1,2-Dichloroethane	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	Benzene	Bromomethane	Carbon Tetrachloride	Chloroethane	Chloroform	Chloromethane	Ethylbenzene	1,1,2-Trichloro-1,2,2-trifluoroethane	Freon 114	Dichlorodifluoromethane	Methylene Chloride	Naphthalene	Styrene	Tetrachloroethene	Toluene	Trichlorofluoromethane	Xylene (total)	m,p-Xylenes	o-Xylene
												ug/r	n3											
DT	TSC SLc					0.097		0.47					-			-			0.46	-		-	-	
DT	SC SLnc					3.1		42										940	42	310	1300			
R	SLs C		0.11		0.26	0.36		0.47		0.12		1.1				100	0.083		11					
<u>R</u>	SLs NC	63	7.3	63	830	31	5.2	100	4200	2	94	1000	5200		100	630	3.1	1000	42	5200		100	100	100
WB01-14D	10/1 - 10/15/2024	0.30	0.063	0.074	<0.066	0.8	0.08	0.46	< 0.029	0.14	0.99	0.27	0.46	0.11	2.3	0.55	0.059	0.1	< 0.075	1.4	1.1	1.1	0.79	0.32
WB02-14D	10/1 - 10/15/2024	0.37	0.066	0.10	< 0.060	0.83	0.084	0.45	0.049	0.16	0.99	0.33	0.44	0.12	2.3	0.60	0.077	0.12	<0.068	1.5	1	1.3	0.90	0.35
WB02-14D-R2	12/2 - 12/16/2024	1.2	0.1	0.34	0.082	1.9	0.15	0.44	< 0.026	0.19	1.1	0.88	0.46	0.1	2.2	0.84	0.15	0.41	0.1	3.3	1.1	3.5	2.50	0.95
WB03-14D	10/1 - 10/15/2024	0.24	0.062	0.055	<0.060	0.72	0.082	0.47	<0.026	0.17	1.0	0.25	0.47	0.12	2.3	0.59	< 0.052	0.076	<0.068	1.2	1.1	0.99	0.71	0.28
WB03-14D-R2	12/2 - 12/16/2024	0.92	0.097	0.26	0.092	1.7	0.16	0.45	<0.026	0.2	1.1	0.73	0.47	0.1	2.2	0.93	0.11	0.46	0.11	3.2	1.1	3.2	2.3	0.89
WB04-14D	10/1 - 10/15/2024	0.29	0.062	0.065	<0.060	0.74	0.075	0.47	<0.026	0.16	1.0	0.26	0.47	0.12	2.3	1.2	< 0.052	0.11	<0.068	1.4	1.1	1.1	0.76	0.3
WB05-14D	10/1 - 10/15/2024	0.29	0.061	0.074	< 0.072	3.2**	0.084	0.46	< 0.032	0.16	1.0	0.26	0.46	0.11	2.3	0.76	0.074	0.13	<0.081	5.8**	1.1	1.0	0.73	0.29
WB05-14D-R2		1.3	0.096	0.33	0.09	1.7	0.15	0.45	<0.029	0.19	1.1	0.72	0.47	0.1	2.2	0.91	0.16	0.47	0.12	3.4	1.1	3.1	2.3	0.87
WB06-14D	10/1 - 10/15/2024	0.26	0.062	0.065	<0.060	0.74	0.081	0.47	0.045	0.15	1.0	0.28	0.46	0.12	2.3	0.62	<0.052	0.11	<0.068	1.6	1.1	1.0	0.74	0.29
WB07-14D	10/1 - 10/15/2024	0.29	0.061	0.065	<0.060	0.72	0.085	0.46	0.088	0.14	0.99	0.26	0.46	0.12	2.3	0.67	0.059	0.12	<0.068	1.5	1.1	0.99	0.71	0.28
WB08-14D	10/1 - 10/15/2024	0.27	0.062	0.061	<0.066	0.74	0.08	0.47	0.058	0.14	1.0	0.26	0.47	0.12	2.3	0.74	<0.058	0.099	<0.075	1.5	1.1	0.98	0.70	0.28
WB09-14D	10/1 - 10/15/2024	0.29	0.063	0.068	<0.060	0.81	0.092	0.47	0.042	0.18	1.0	0.27	0.47	0.12	2.3	2.8	0.078	0.12	<0.068	1.6	1.1	1.1	0.79	0.31
WB10-14D	10/1 - 10/15/2024	0.50	0.072	0.14	<0.060	0.99	0.083	0.46	<0.026	0.15	0.98	0.45	0.46	0.12	2.3	0.85	0.14	0.13	<0.068	1.3	1.1	1.5	1.2	0.37
	12/2 - 12/16/2024	1.10	0.1		<0.060		0.15	0.45	<0.026		1.1			0.1				0.36	0.12		1.1	3.3		0.87
WB11-14D	10/1 - 10/15/2024	0.30	0.061	0.073	<0.060	0.78	0.089	0.47	0.089	0.14	1.0						0.086	0.13	<0.068	1.6	1.1	1.1	0.78	_
WB12-14D	10/1 - 10/15/2024	0.32	0.062			0.85	0.081	0.46	0.10	0.14	1.0			0.12	-		0.059	0.14	<0.068	1.9	1.1	1.2	0.83	_
WB13-14D	10/1 - 10/15/2024	0.35	0.065	0.085	<0.066	0.89	0.083	0.46	<0.029	0.17	1.0		0.46		-	0.60	0.12	0.32	0.08	2.0	1.1	1.3	0.94	_
WB14-14D	10/1 - 10/15/2024	0.27	0.063	0.067	<0.060	0.78	0.085	0.46	<0.026	0.13	1.0					0.59	0.057	0.086	<0.068	1.3	1.1	1.1	0.75	
WB17-14D	10/1 - 10/15/2024	0.33	0.062	0.085	<0.066	0.82	0.084	0.46	0.032	0.14	1.0	0.3				0.53	0.072	0.13	< 0.075	1.7	1.1	1.2	0.89	
WB18-14D	10/1 - 10/15/2024	0.44	0.062	0.11	< 0.072	0.79	0.11	0.47	0.035	0.14	1.1				_		0.073	0.13	<0.081	1.7	1.1	1.2	0.88	
WB19-14D	10/1 - 10/15/2024	0.30	0.067	0.081	<0.066	1	0.08	0.45	0.069	0.13	1.0	0.31	0.45	U.11	2.3	0.50	<0.058	0.18	< 0.075	1.8	1.1	1.3	0.95	0.37

Notes:

SLc - - DTSC (May 2022) HHRA Note 3 residential air screening level for carcinogenic effects unless otherwise specified.

** determined to be a statistical outlier and excluded from all calculations of risk per Section 4.4

SLnc - DTSC (May 2022) HHRA Note 3 residential air screening level for noncancer effects unless otherwise specified.

RSLs C- USEPA (May 2024) Regional Screening Levels for residential air carcinogenic

RSLs NC- USEPA (May 2024) Regional Screening Levels for residential air Noncarcinogenic

µg/m3 - micrograms per cubic meter

highlighted where above screening criteria

Table 5

Characterization of Potential Chronic Human Health Risks Associated with Onsite Outdoor Air Exposure Proposed Walnut Bluff Development

Analyte	N	Detects	Percent FOD	Max Outdoor Air (μg/m³)	95% UCL Outdoor Air (µg/m³)	*	Res SLc (μg/m³)		Res SLnc (μg/m³)	*	Cancer Risk	Hazard Quotient
Petroleum Hydrocarbons												
Benzene	13	13	100	1.0	0.84		0.097		3.1		8.6E-06	2.7E-01
Toluene	13	13	100	2.0	1.6		NTV		310		-	5.3E-03
Ethylbenzene	14	14	100	0.45	0.31		1.1	2	1,000	2	2.8E-07	3.1E-04
m,p-Xylenes	14	14	100	1.2	0.87		NTV		100	2	1	8.7E-03
o-Xylene	14	14	100	0.37	0.33		NTV		100	2	1	3.3E-03
Naphthalene	14	10	71	0.14	0.086		0.083		3.1	2	1.0E-06	2.8E-02
1,2,4-Trimethylbenzene	14	14	100	0.50	0.34		NTV		63	2	1	5.4E-03
1,3,5-Trimethylbenzene	14	14	100	0.14	0.086		NTV		63	2	1	1.4E-03
Cumulative Cancer Risk a	nd Ha	zard Index									1.0E-05	3.2E-01
Non-Petroleum Hydrocart	ons											
1,2-Dichloroethane	14	14	100	0.072	0.065		NTV		NTV		-	-
Bromomethane	14	14	100	0.092	0.085		NTV		5.2	2	-	1.6E-02
Carbon Tetrachloride	14	14	100	0.47	0.47		0.47		42		9.9E-07	1.1E-02
Chloroethane	14	7	50	0.10	0.060		NTV		4,200	2	-	1.4E-05
Chloroform	14	14	100	0.18	0.16		0.12	2	2.0	2	1.3E-06	8.0E-02
Chloromethane	14	14	100	1.0	1.0		NTV		94	2	-	1.1E-02
Freon 113	14	14	100	0.47	0.47		NTV		5,200	2	-	9.0E-05
Freon 114	14	14	100	0.12	0.12		NTV		NTV		-	-
Freon 12	14	14	100	2.3	2.3	1	NTV		100	2	-	2.3E-02
Methylene Chloride	14	14	100	2.8	1.1		1		420		1.1E-06	2.7E-03
Styrene	14	14	100	0.32	0.16		NTV		940		-	1.6E-04
Tetrachloroethene	14	1	7.1	0.080	0.080	1	0.46		42		1.7E-07	1.9E-03
Trichlorofluoromethane 14 14 100 1.1 1.1 0.48 2 2.1 2 2.3E-06 5.3I											5.3E-01	
Cumulative Cancer Risk a	ınd Ha	zard Index									5.9E-06	6.7E-01
Total Cumulative Cancer	Risk ar	nd Hazard	Index ³								1.6E-05	9.9E-01

Notes:

N = sample size

FOD = frequency of detection.

95% UCL = 95% upper confidence limit on the mean concentration calculated using USEPA (2022) ProUCL (version 5.2) statistical software.

Res SLc - - DTSC (2022a) HHRA Note 3 residential air screening level for carcinogenic effects unless otherwise specified. June.

Res SLnc - DTSC (2022a) HHRA Note 3 residential air screening level for noncancer effects unless otherwise specified. June.

NTV = no toxicity/screening value available

- 1. Insufficient data for calculating 95% UCL using standard USEPA (2022) methods. Value shown is the lower of the 95% UCL calculated using the 1/2 detection limit method or the maximum concentration.
- 2. USEPA (2024) Regional Screening Levels for residential air. November.
- 3. Total Cumulative Cancer Risk and Hazard Index is the combined cancer risks and hazard indices from petroleum hydrocarbons and non-petroleum hydrobarbons.

Table 6

Characterization of Potential Acute Human Health Risks Associated with Onsite Outdoor Air Exposure Proposed Walnut Bluff Development

Analyte	Max 1-Hour (μg/m3)	Acute REL (μμg/m3)	Source	Acute Hazard Quotient (unitless)
Petroleum Hydrocarbons				
Benzene	1.9	27	OEHHA	7.0E-02
Ethylbenzene	0.81	143,297	AEGL	5.7E-06
Naphthalene	0.38	200	AGV	1.9E-03
Toluene	7.2	5,000	OEHHA	1.4E-03
o-Xylene	0.92	22,000	OEHHA	4.2E-05
p- & m-Xylenes	2.8	22,000	OEHHA	1.3E-04
Total Xylenes ²	3.7	22,000	OEHHA	1.7E-04
Cumulative Acute Hazard Index				7.4E-02
Non-Petroleum Hydrocarbons				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.53	NTV	-	-
1,1-Difluoroethane	1.7	NTV	-	-
1,2-Dichloroethane	0.11	200,000	PAC	5.5E-07
1,4-Dichlorobenzene	0.12	NTV	-	-
Carbon tetrachloride	0.51	1,900	OEHHA	2.7E-04
Chloroform	0.27	150	OEHHA	1.8E-03
Dichlorodifluoromethane	2.4	NTV	-	-
Tetrachloroethene	0.09	20,000	AGV	4.5E-06
Trichlorofluoromethane	1.3	NTV	-	-
Cumulative Acute Hazard Index				2.1E-03
Total Cumulative Acute Hazard Index ¹				7.6E-02

Notes:

OEHHA = California Office of Environmental Health Hazard Assessment (2024) Acute Reference Exposure Levels

AEGL = U.S. Environmental Protection Agency (2019) Acute Exposure Guideline Level

PAC = U.S. Department of Energy (2018) Protective Action Criteria

AGV = Minnesota Department of Health (2024) acute Air Guidance Values (AGVs)

NTV = no toxicity/screening value available.

- 1. Total Cumulative Acute Hazard Index is the combined acute hazard indices from petroleum hydrocarbons and non-petroleum hydrocarbons.
- 2. Total Xyelenes not included in the cumulative HI calculations as this would result in double-counting xylenes whereby the cumulative HI for o-xylene + the cumulative HI for m&p-xylene is greater than the cumulative HI for Total Xylenes.

Table 7
Characterization of Potential Chronic Human Health Risks
Associated with Offsite Ambient Air Exposure to Petroleum-Related COPCs
Proposed Walnut Bluff Development

Analyte	N	Detects	Percent FOD	Max Outdoor Air (µg/m3)	95% UCL Outdoor Air (µg/m3)	*	Res SLc (µg/m3)		Res SLnc (µg/m3)	*	Cancer Risk	Hazard Quotient
Petroleum Hydrocarbons												
Benzene	3	3	100	1.0	1.0	1	0.097		3.1		1.0E-05	3.2E-01
Toluene	3	3	100	1.8	1.8	1	NTV		310		-	5.8E-03
Ethylbenzene	3	3	100	0.31	0.31	1	1.1	2	1,000	2	2.8E-07	3.1E-04
m,p-Xylenes	3	3	100	0.95	0.95	1	NTV		100	2	-	9.5E-03
o-Xylene	3	3	100	0.37	0.37	1	NTV		100	2	-	3.7E-03
Naphthalene	3	2	67	0.073	0.073	1	0.083		3.1	2	8.8E-07	2.4E-02
1,2,4-Trimethylbenzene	3	3	100	0.44	0.44	1	NTV		63	2	-	7.0E-03
1,3,5-Trimethylbenzene	3	3	100	0.11	0.11	1	NTV		63	2	-	1.7E-03
Cumulative Cancer Risk and	Hazard Ind	ex									1.1E-05	3.7E-01

Notes:

N = sample size

FOD = frequency of detection.

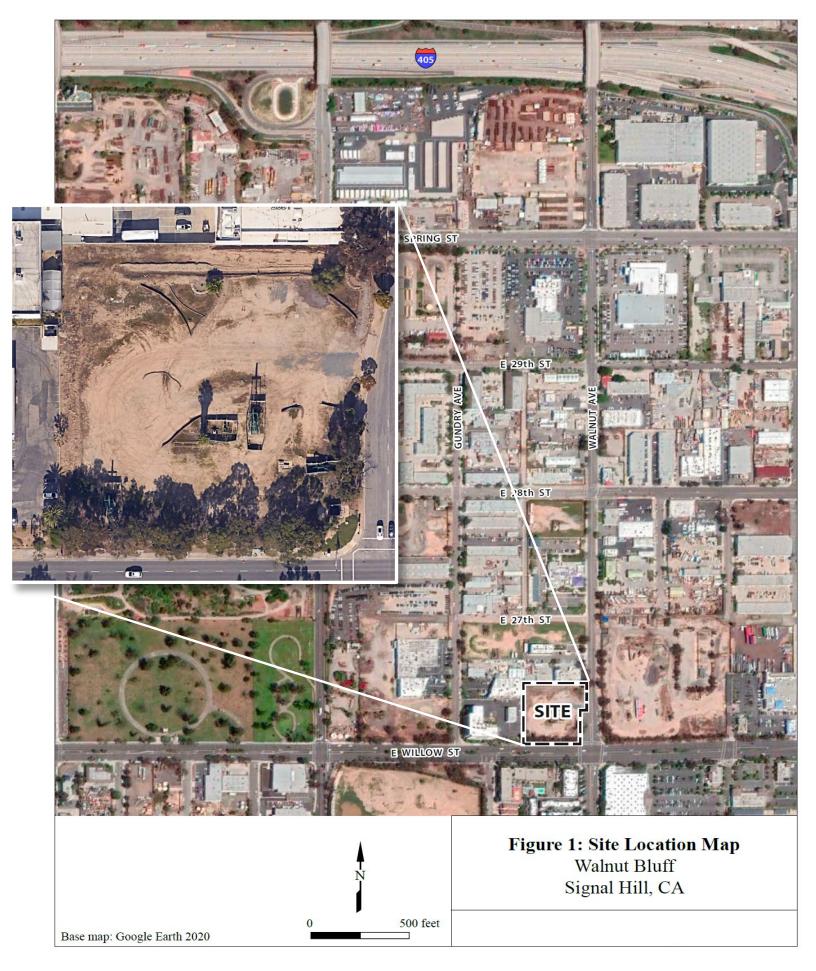
95% UCL = 95% upper confidence limit on the mean concentration calculated using USEPA (2022) ProUCL (version 5.2) statistical software.

Res SLc - - DTSC (2022) HHRA Note 3 residential air screening level for carcinogenic effects unless otherwise specified. June.

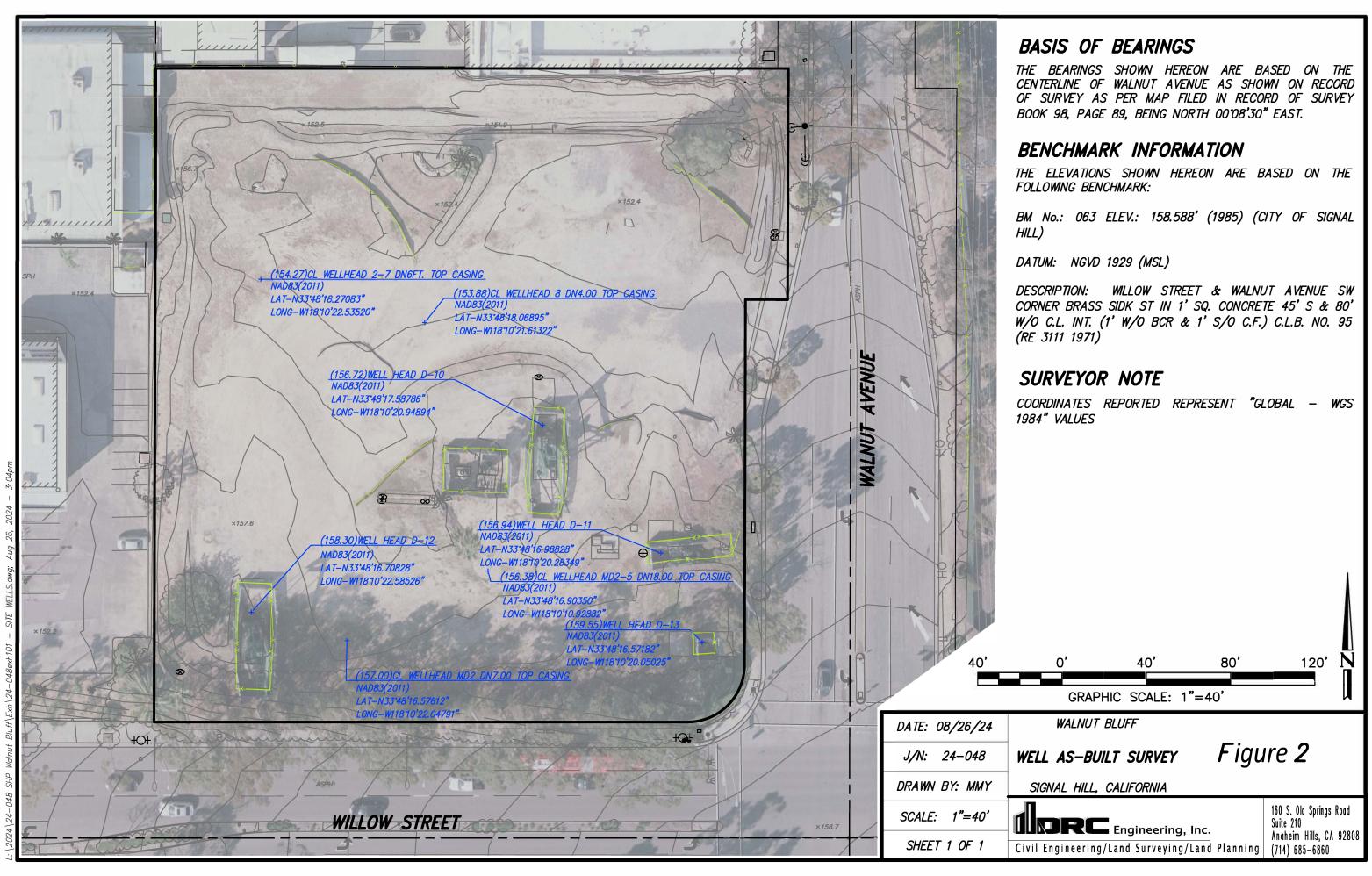
Res SLnc - DTSC (2022) HHRA Note 3 residential air screening level for noncancer effects unless otherwise specified. June.

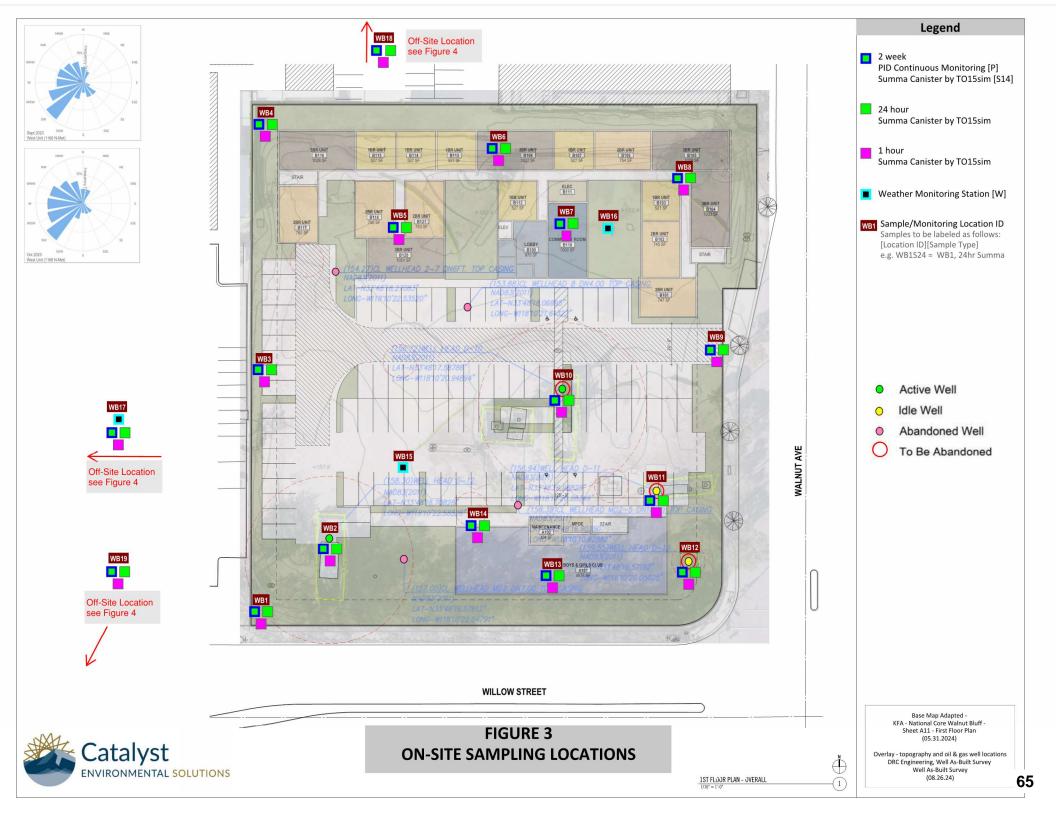
NTV = no toxicity/screening value available

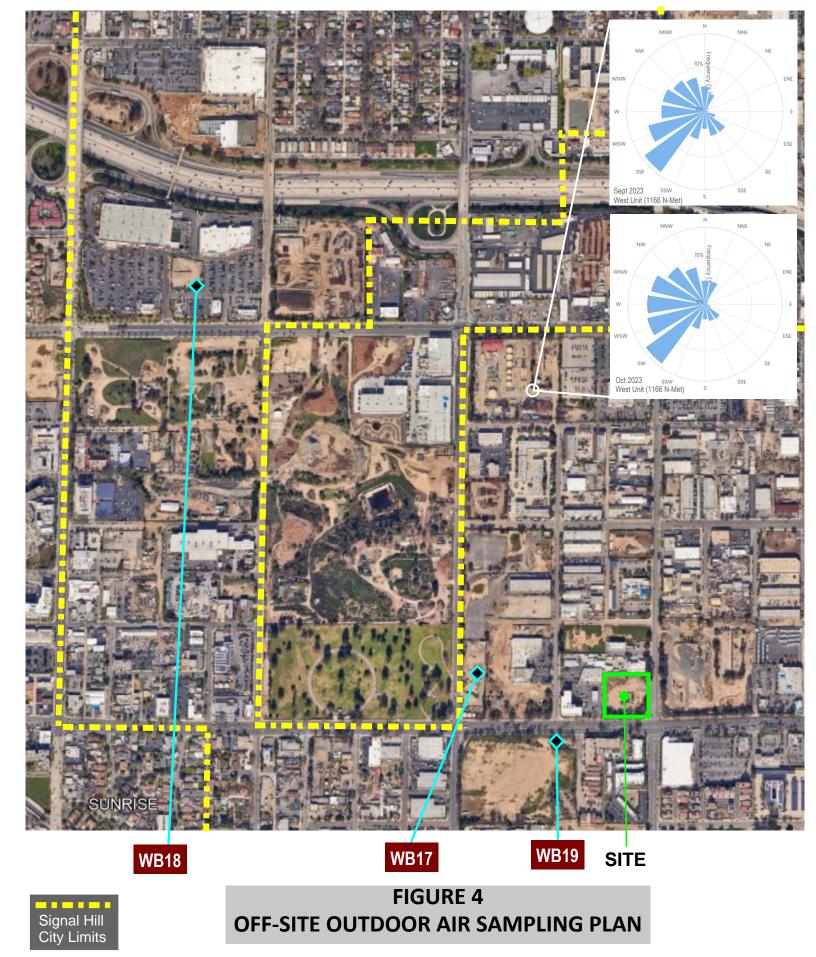
- 1. Insufficient data for calculating 95% UCL using standard USEPA (2022) methods. Value shown is the lower of the 95% UCL calculated using the 1/2 detection limit method or the maximum concentration.
- 2. USEPA (2024) Regional Screening Levels for residential air. May.


Table 8
Comparison of Regional and Walnut Bluff
Average Outdoor Air Petroleum Hydrocarbon Concentrations
Proposed Walnut Bluff Development

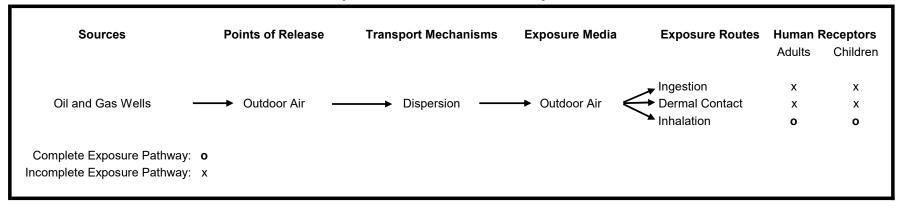
	Benz	ene	Tolu	ene	Ethylbe	nzene	Xyle	nes	Naphth	alene
Study	μg/	m ³	μg/i	m ³	μg/	m ³	μg/	m ³	μg/i	m^3
	Long Beach	Regional	Long Beach	Regional	Long Beach	Regional	Long Beach	Regional	Long Beach	Regional
MATES II 1998-1990	2.6	3.6	7.9	13	1.4	2.1	6.1	9.8	ND	ND
MATES III 2005	1.7	1.9	5.7	7.5	0.94	1.2	4.5	4.3	ND	0.20
MATES IV 2012-2013	1.0	1.2	2.8	4.0	0.48	0.90	1.9	3.0	0.08	0.10
MATES V 2018-2019	1.0	0.88	2.3	2.8	0.42	0.49	1.7	2.1	ND	0.061
WB Offsite- Oct 2024	0.0	37	1.	7	0.3	30	1.	2	0.0	73
WB Onsite - Oct 2024	3.0	30	1.5	5	0.2	29	1.	1	0.0	81
	Benz	ene	Tolu	ene	Ethylbe	nzene	Xyle	nes	Naphth	alene
Study	cance	r risk	noncancer h	azard index	cance	r risk	noncancer h	azard index	cance	r risk
	Long Beach	Regional	Long Beach	Regional	Long Beach	Regional	Long Beach	Regional	Long Beach	Regional
MATES II 1998-1990	2.7E-05	3.7E-05	2.6E-02	4.2E-02	1.3E-06	1.9E-06	6.1E-02	9.8E-02		
MATES III 2005	1.7E-05	1.9E-05	1.8E-02	2.4E-02	8.6E-07	1.1E-06	4.5E-02	4.3E-02		1.8E-07
MATES IV 2012-2013	1.1E-05	1.2E-05	9.0E-03	1.3E-02	4.3E-07	8.2E-07	1.9E-02	3.0E-02	9.2E-07	1.3E-06
MATES V 2018-2019	1.1E-05	9.1E-06	7.4E-03	9.2E-03	3.8E-07	4.4E-07	1.7E-02	2.1E-02		7.4E-07
WB Offsite- Oct 2024	9.0E	-06	5.6E	-03	2.8E	-07	1.2E	-02	8.7E	-07
WB Onsite - Oct 2024	8.2E	-06	4.9E	-03	2.6E	-07	1.1E	-02	9.7E	-07


Notes:


^{1,2,4-}Trimethylbenzene and 1,3,5-trimethylbenzene are not shown as they're concentrations were not reported in the MATES regional studies. Bold values exceed MATES regional air concentrations.


Figures

(Source: Mearns Consulting, LLC 2021)



Note:

See Figure 3 for Sampling Legend.

Figure 5
Human Health Risk Assessment Conceptual Site Model
Proposed Walnut Bluff Development

Charts

CHART 1

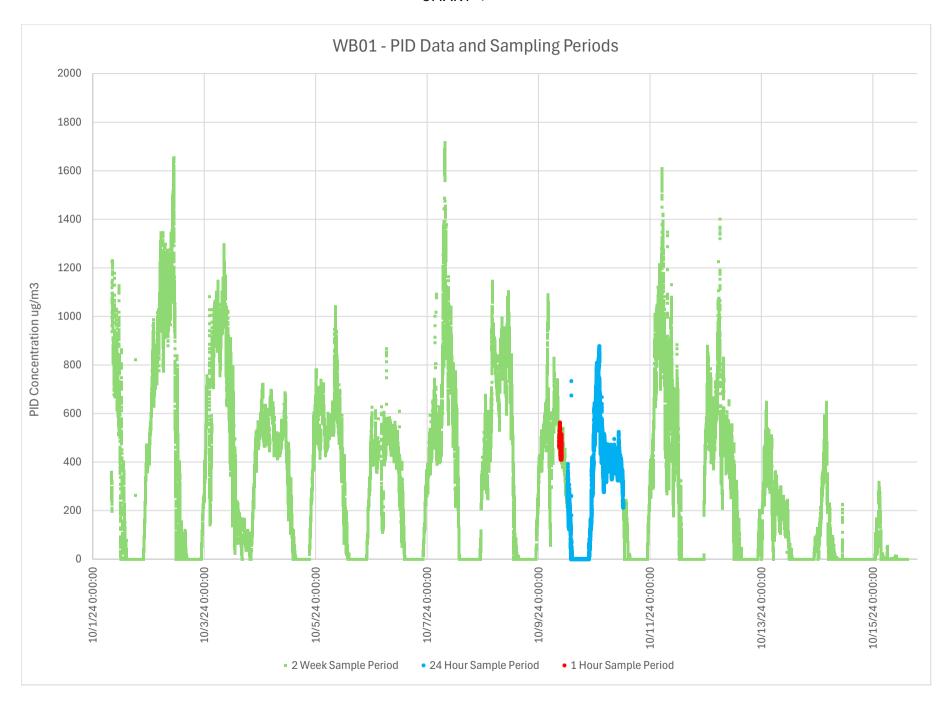


CHART 2

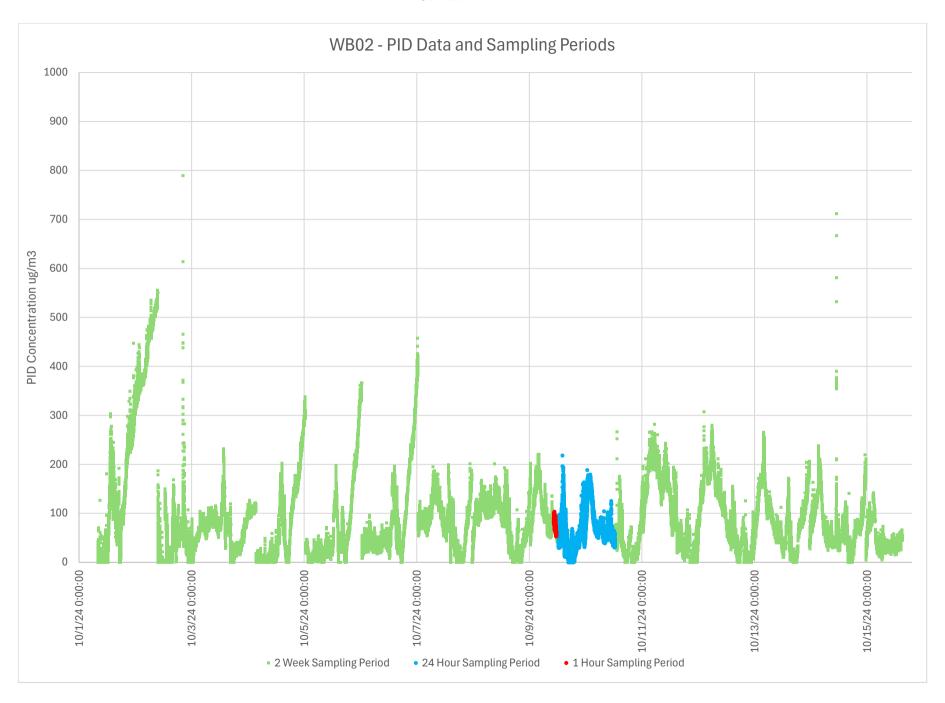


CHART 3

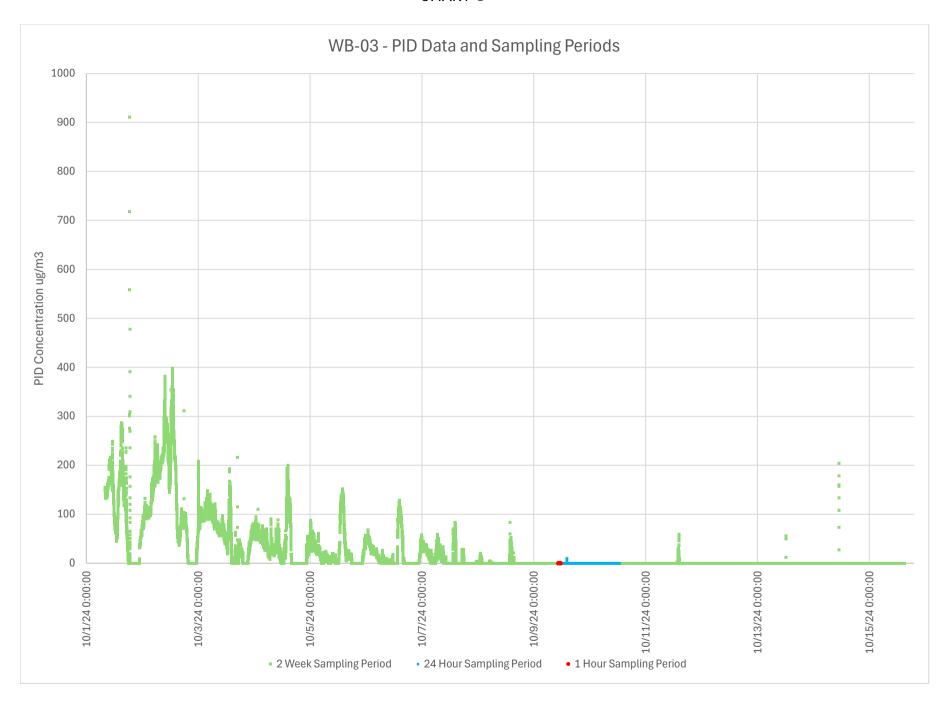


CHART 4

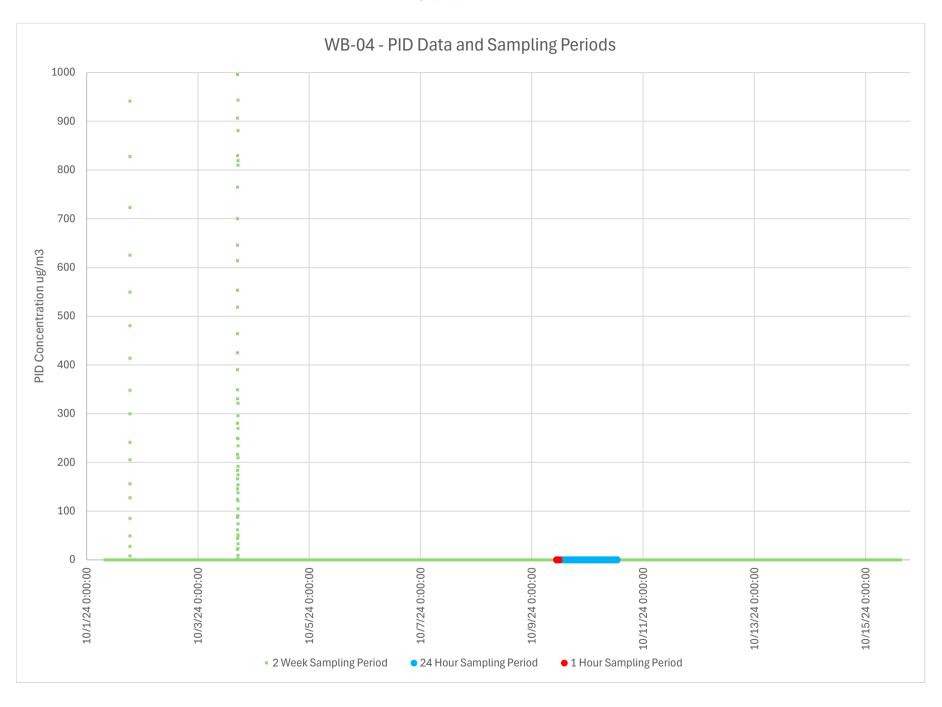


CHART 5

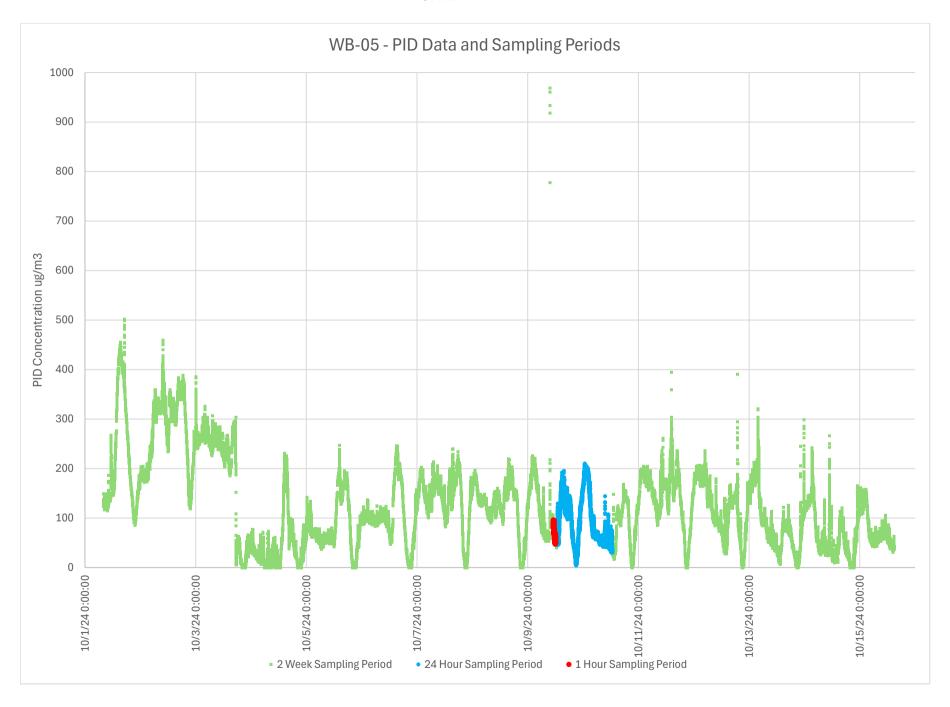


CHART 6

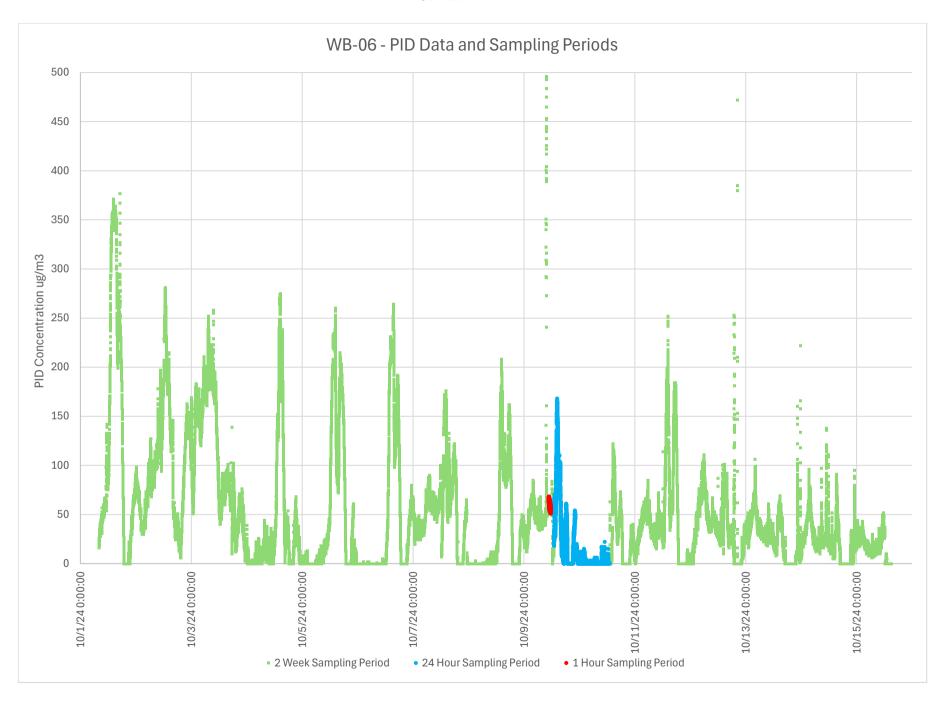


CHART 7

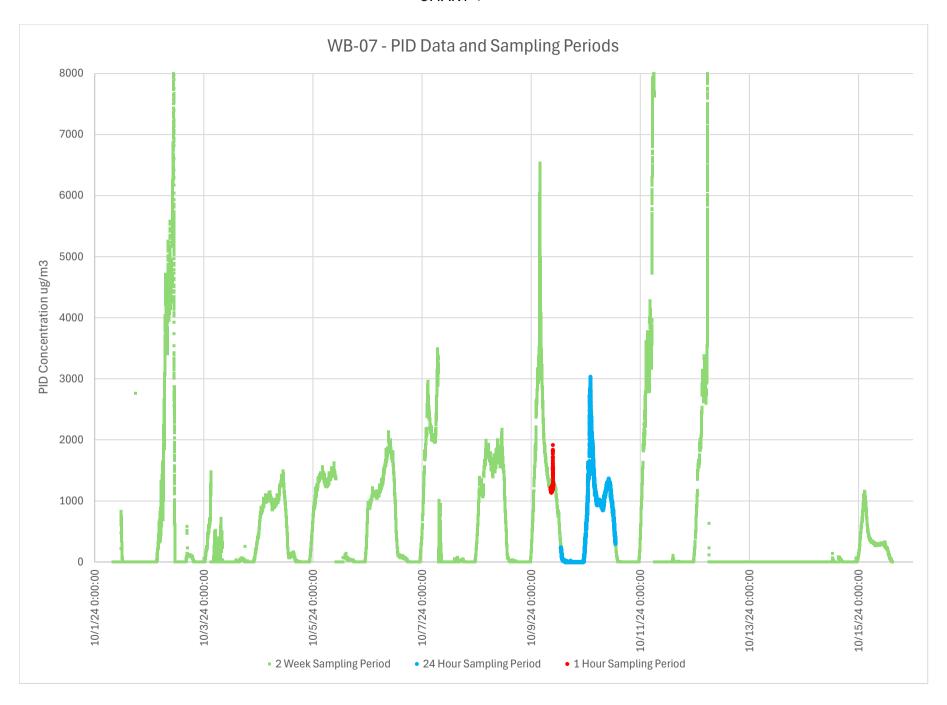


CHART 8

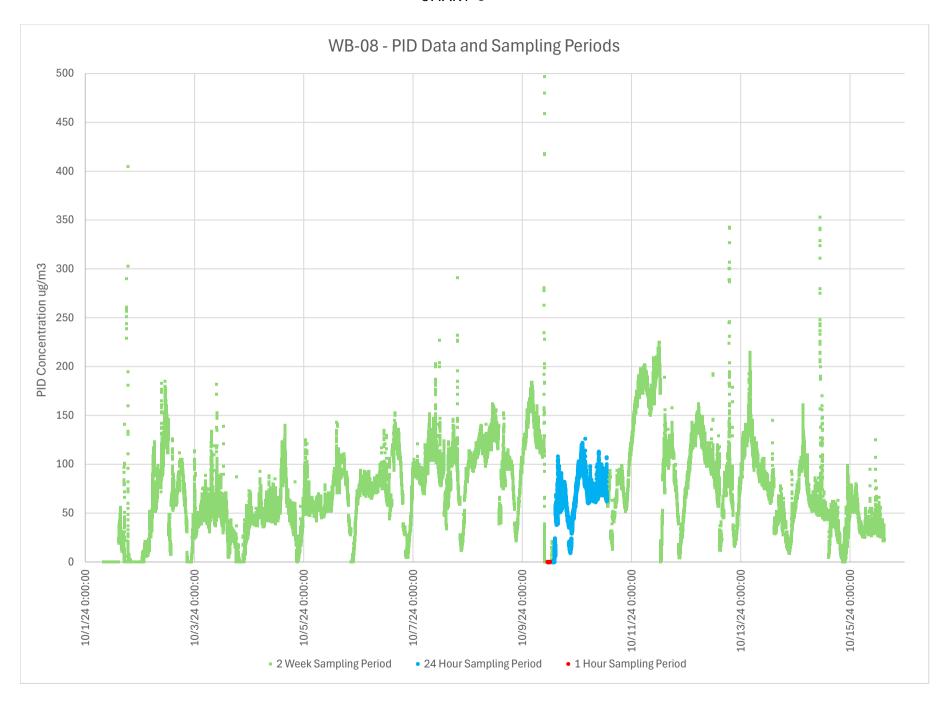


CHART 9

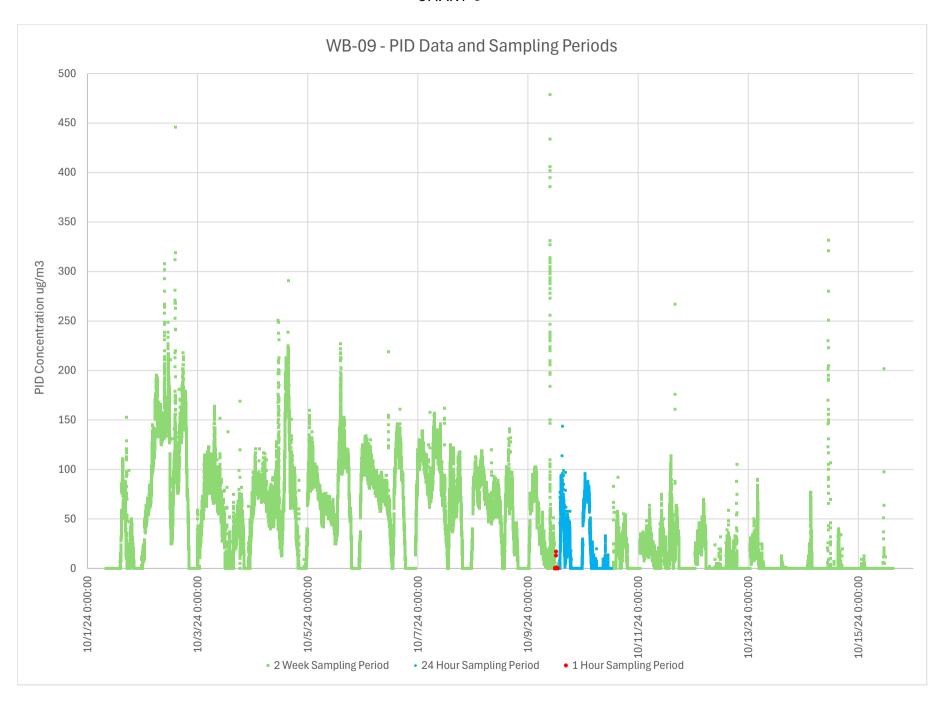


CHART 10

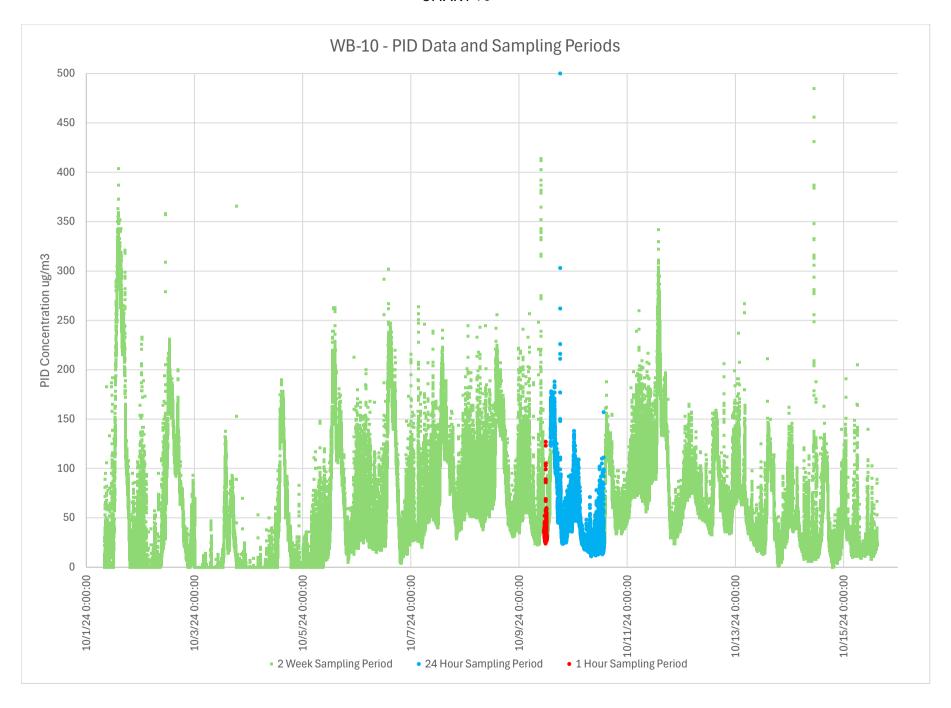


CHART 11

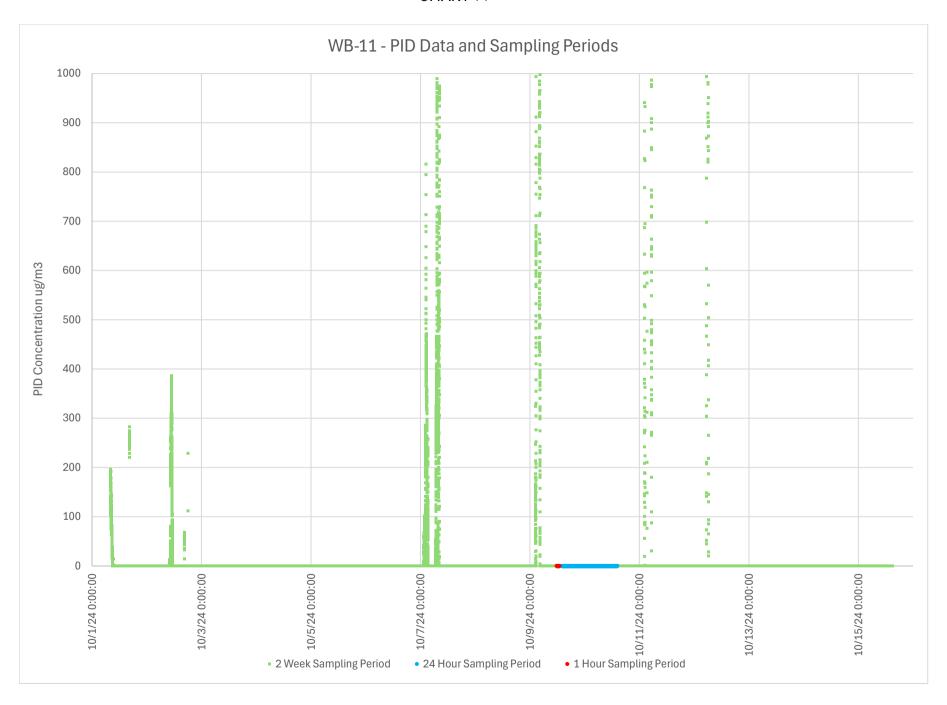


CHART12

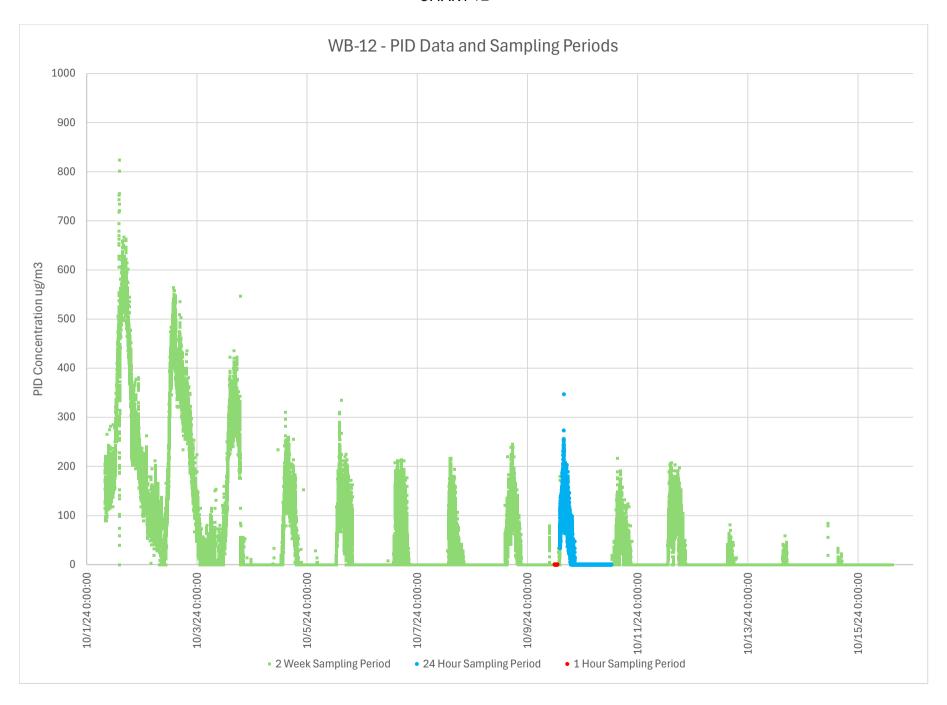


CHART13

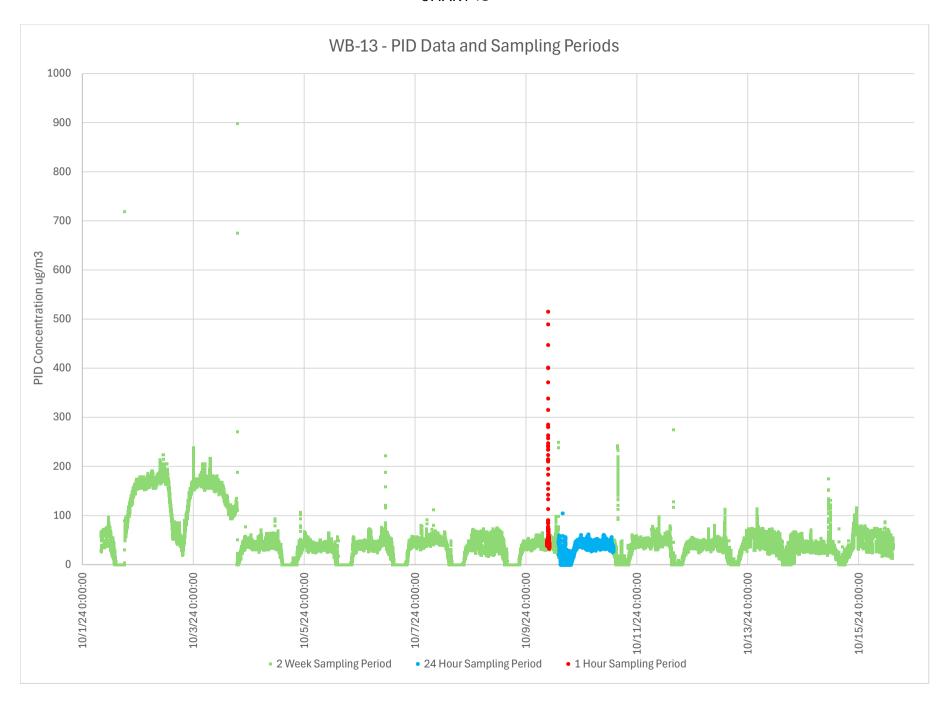


CHART14

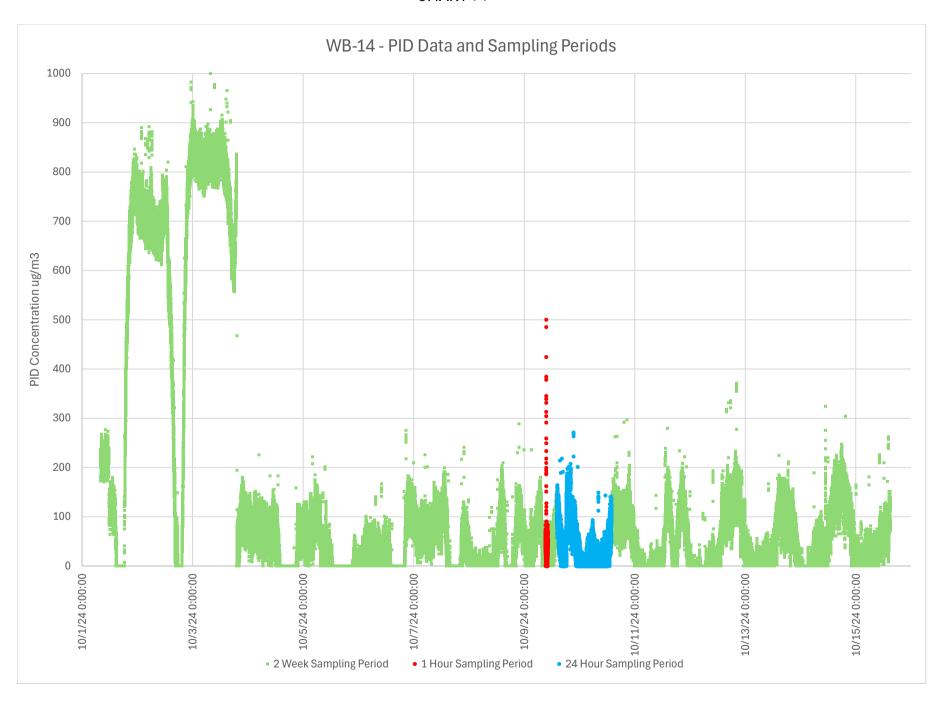
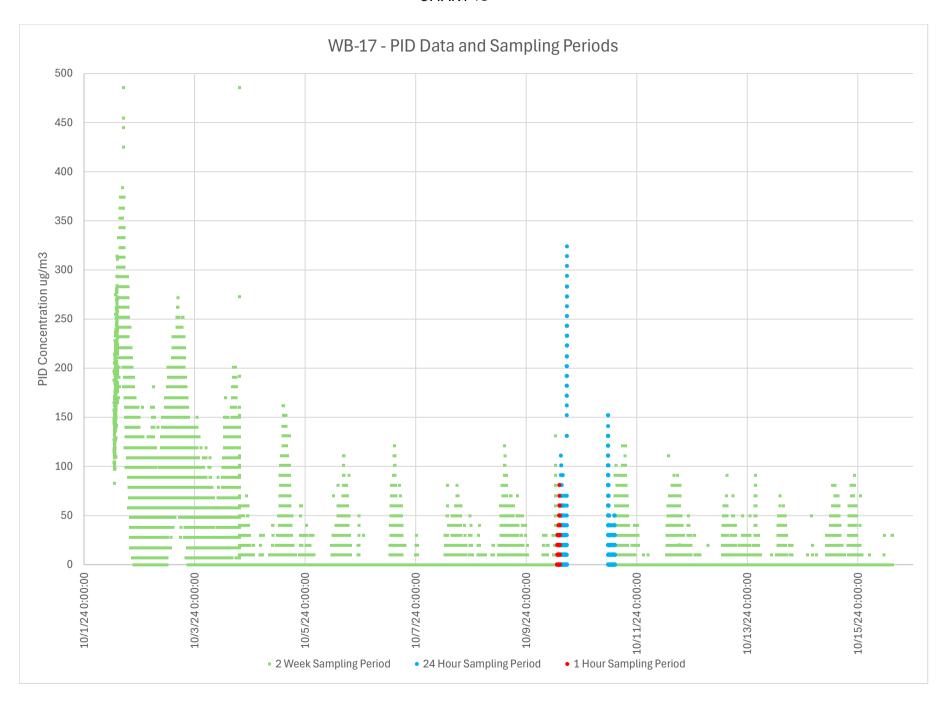
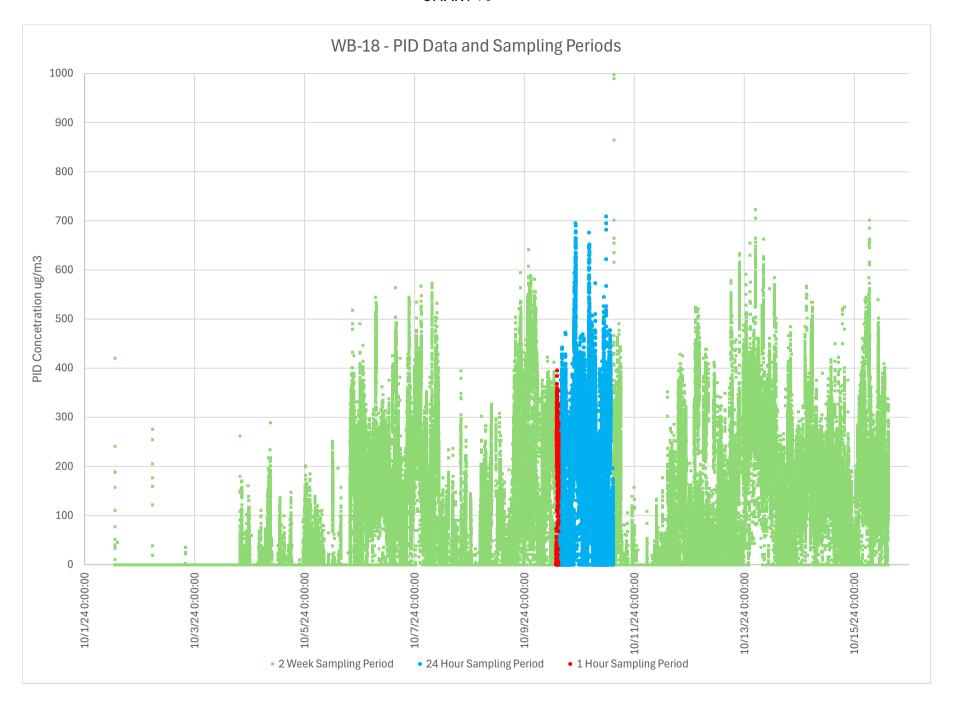
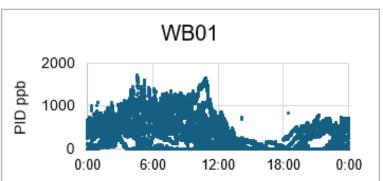
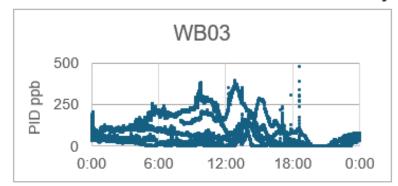
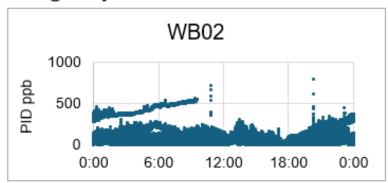
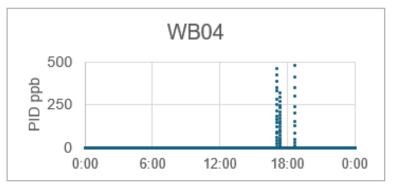
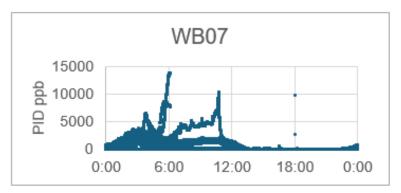


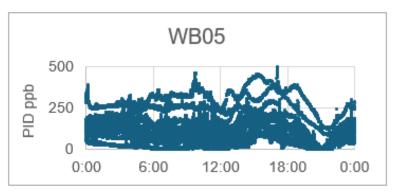
CHART15

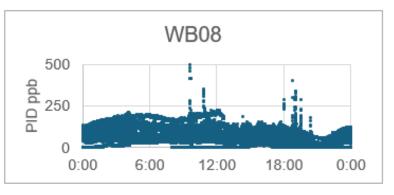





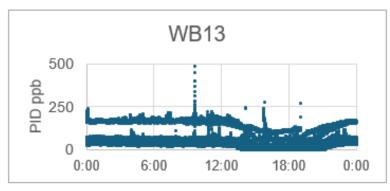

CHART16

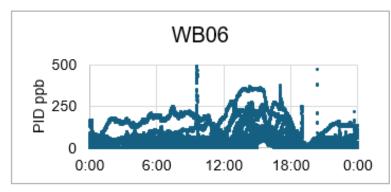


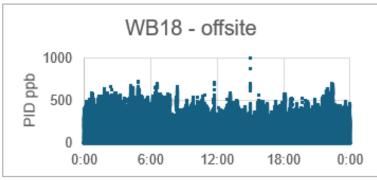

Chart 19 - PID Measurements vs 24 Hour Day - Arranged by Pattern - Oct 1 0800 - Oct 15 1500

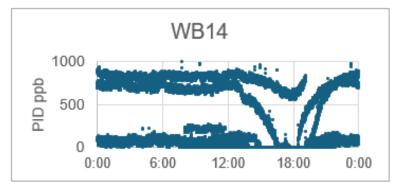


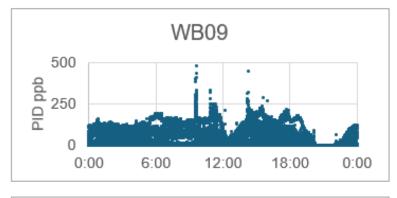


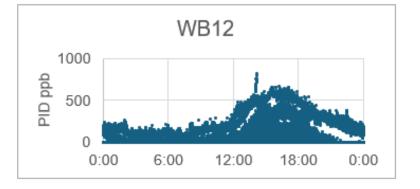


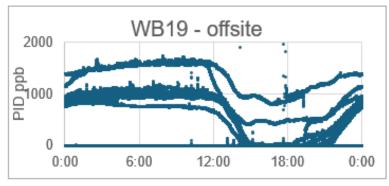


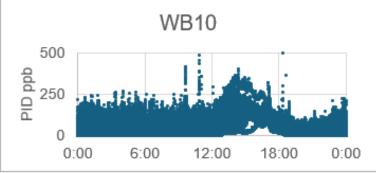


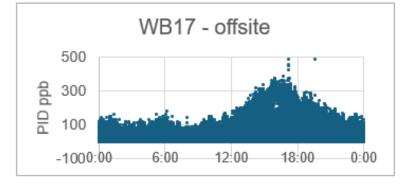


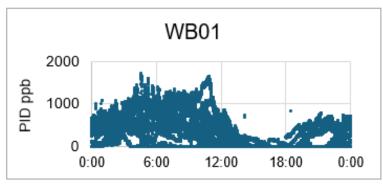


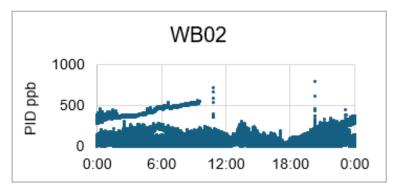


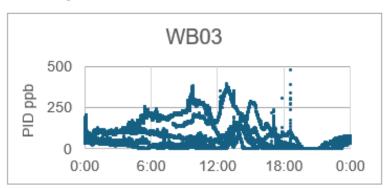


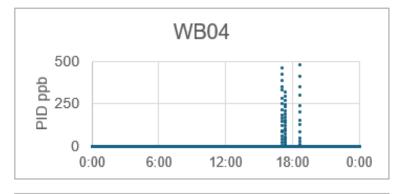


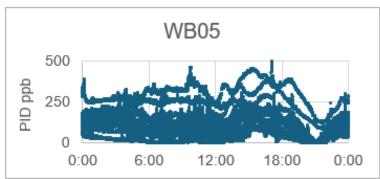


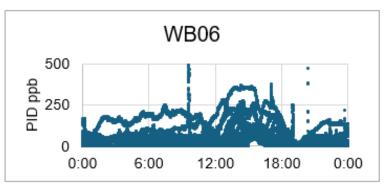


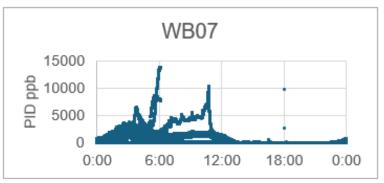


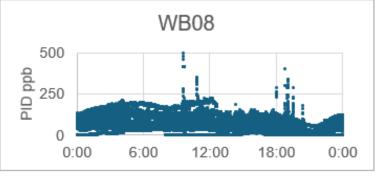


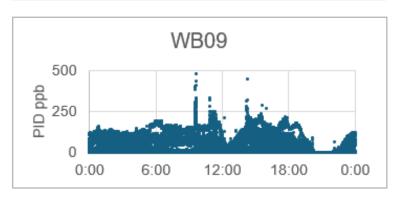


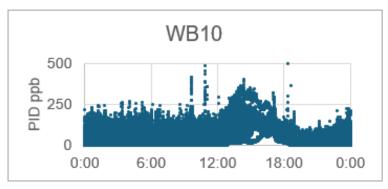

Chart 18 - PID Measurements vs 24 Hour Day - Oct 1 0800 - Oct 15 1500

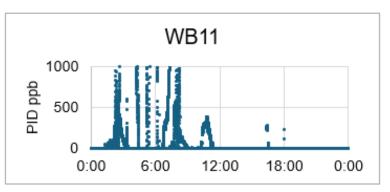


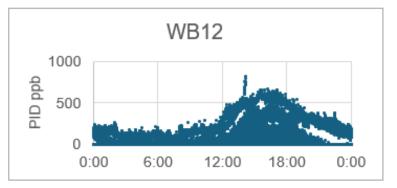


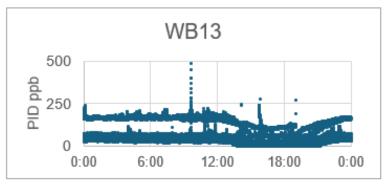


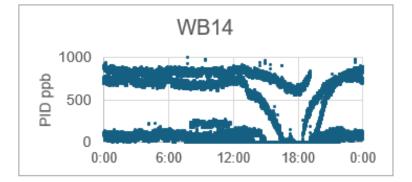


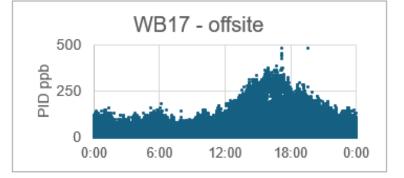


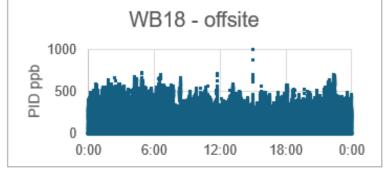


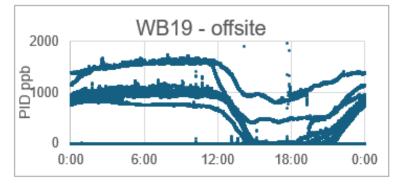
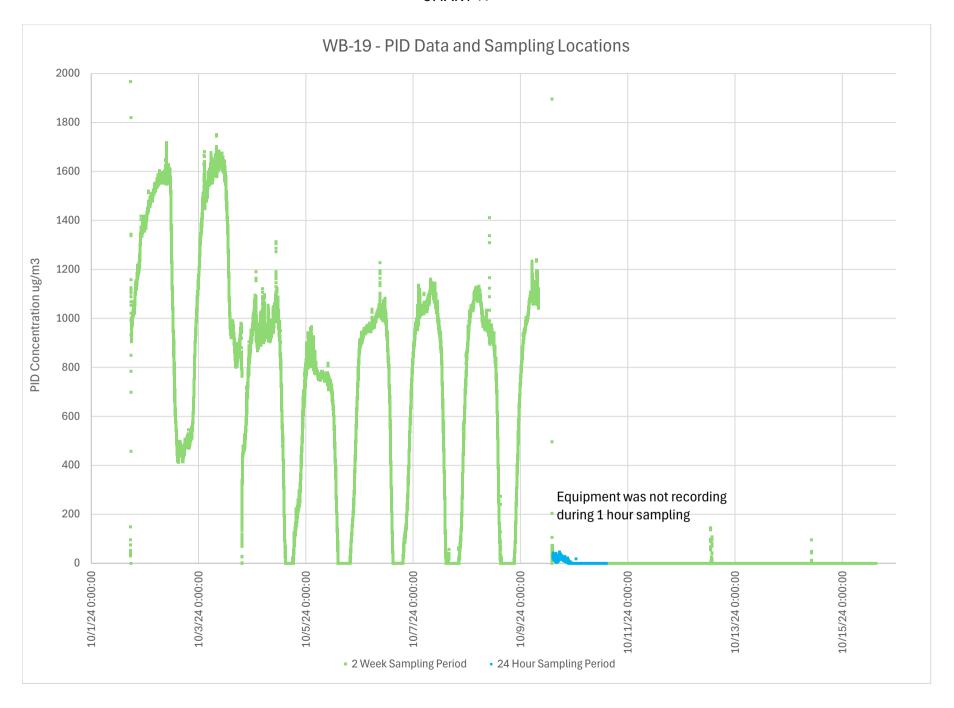
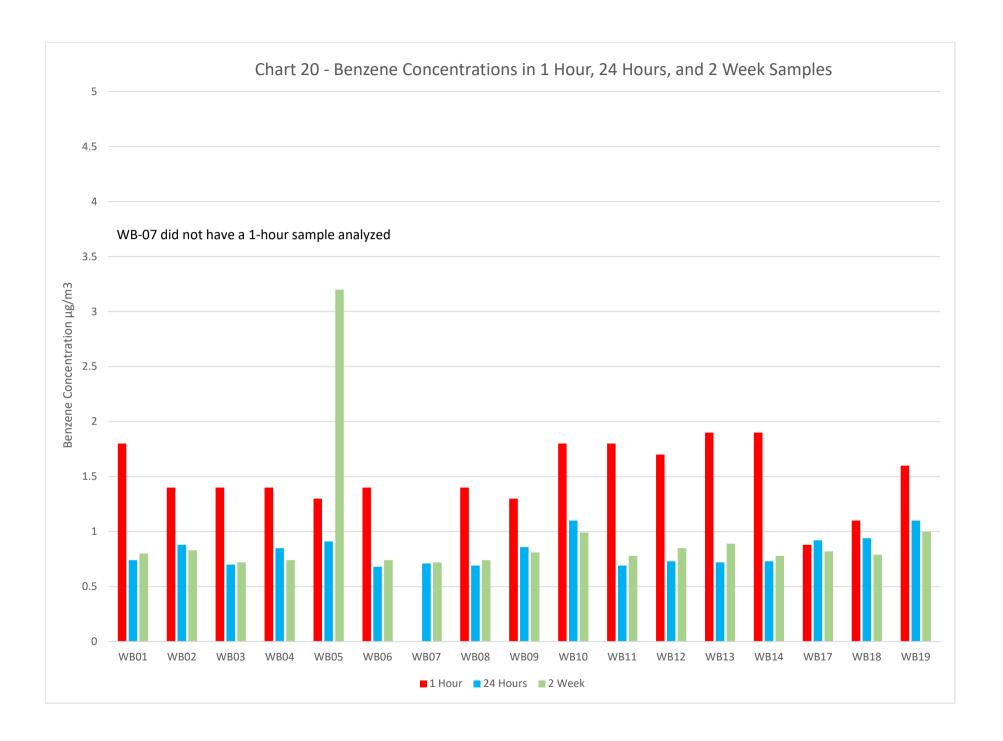
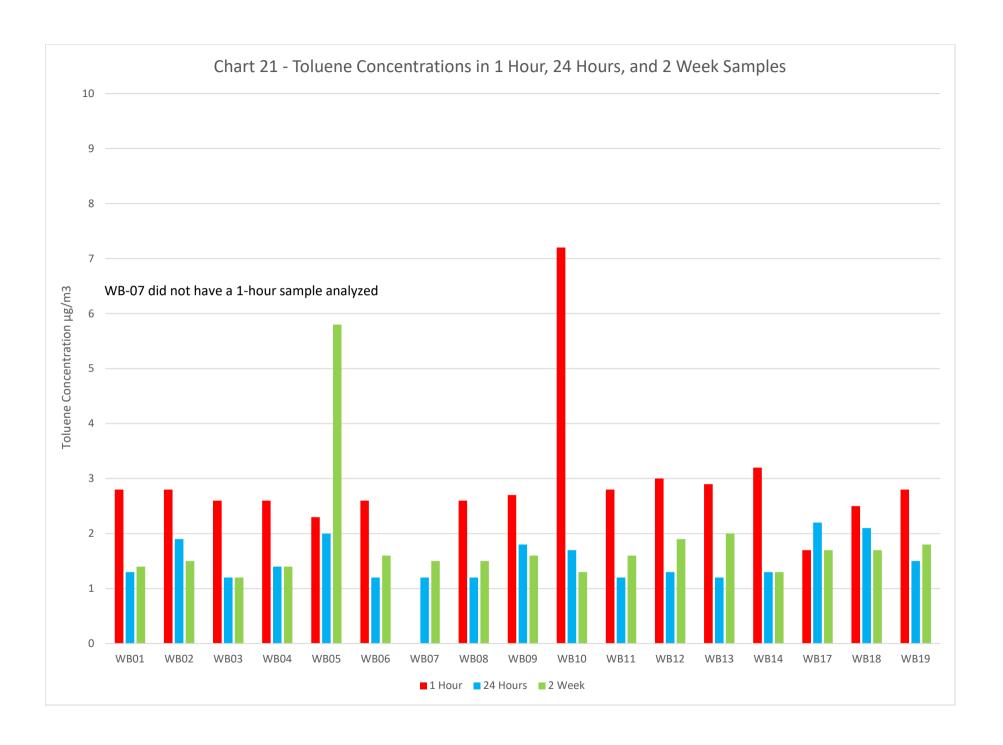
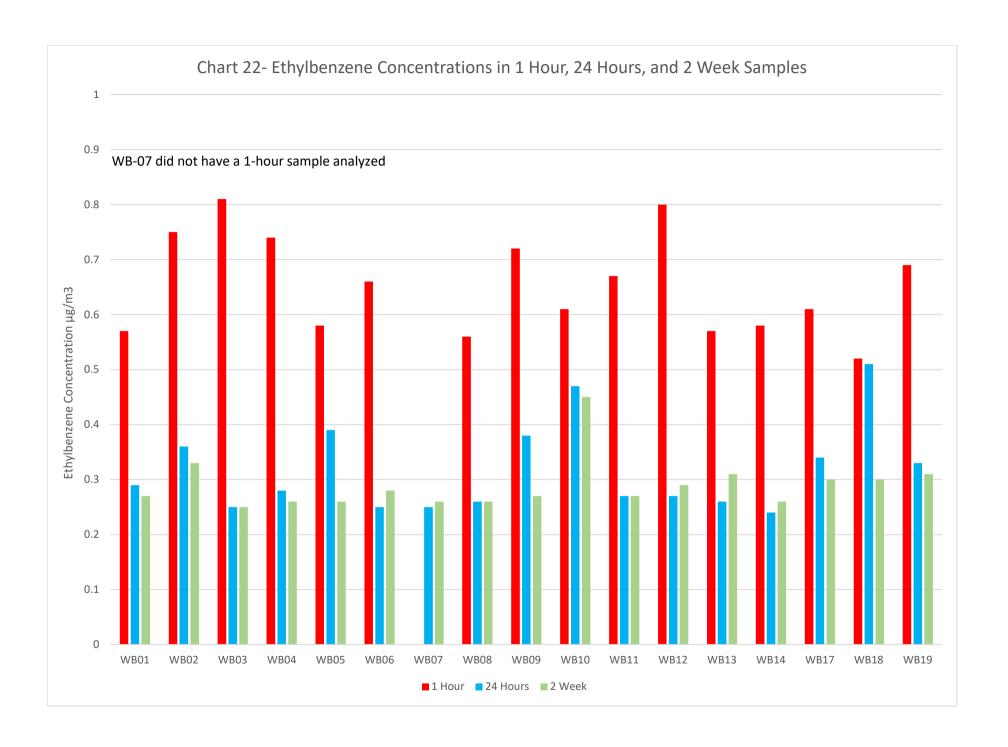


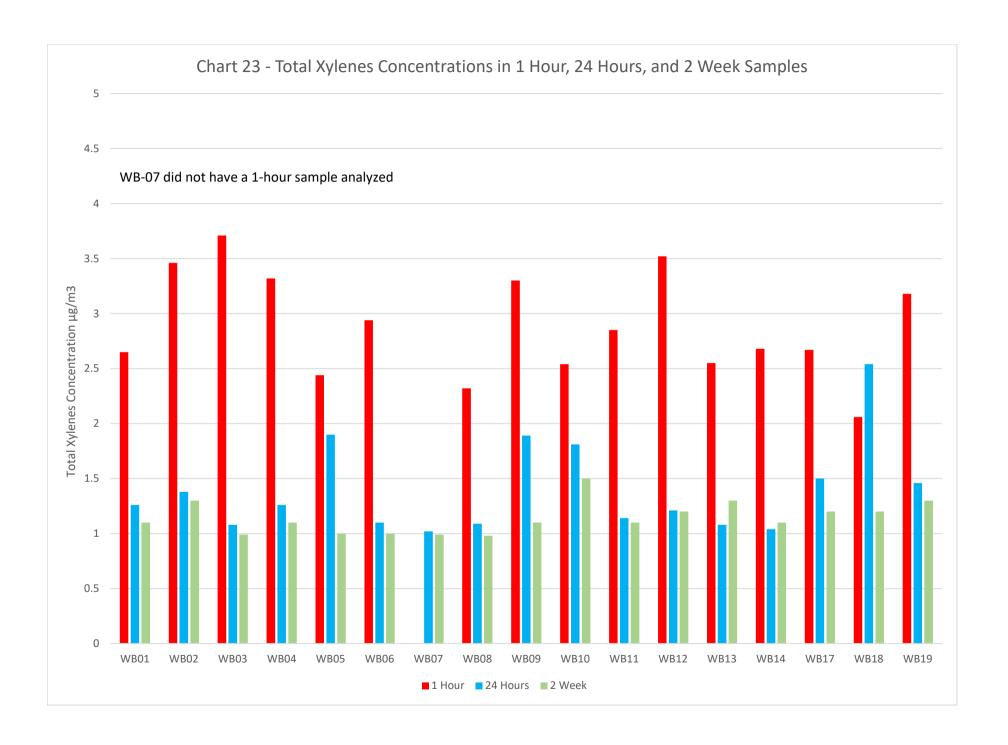


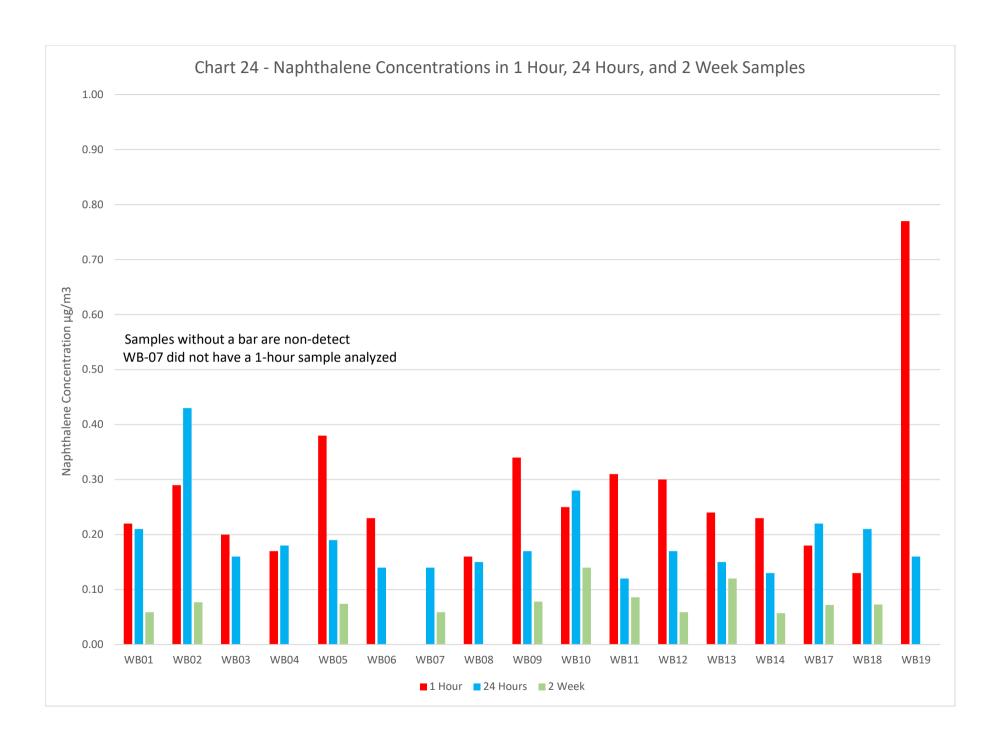


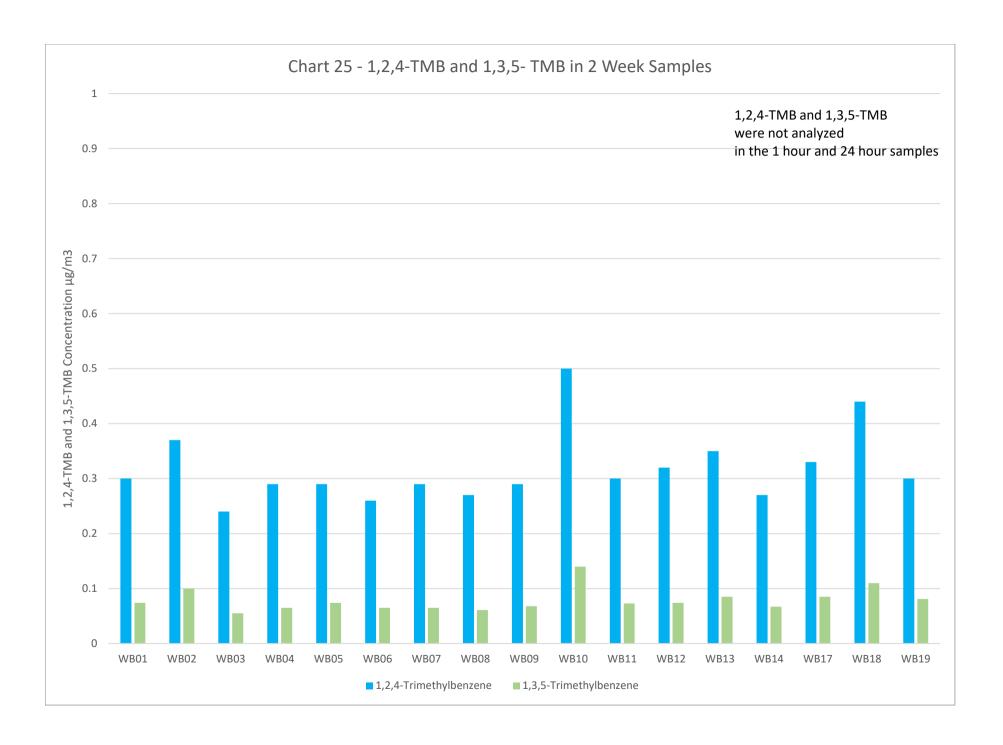


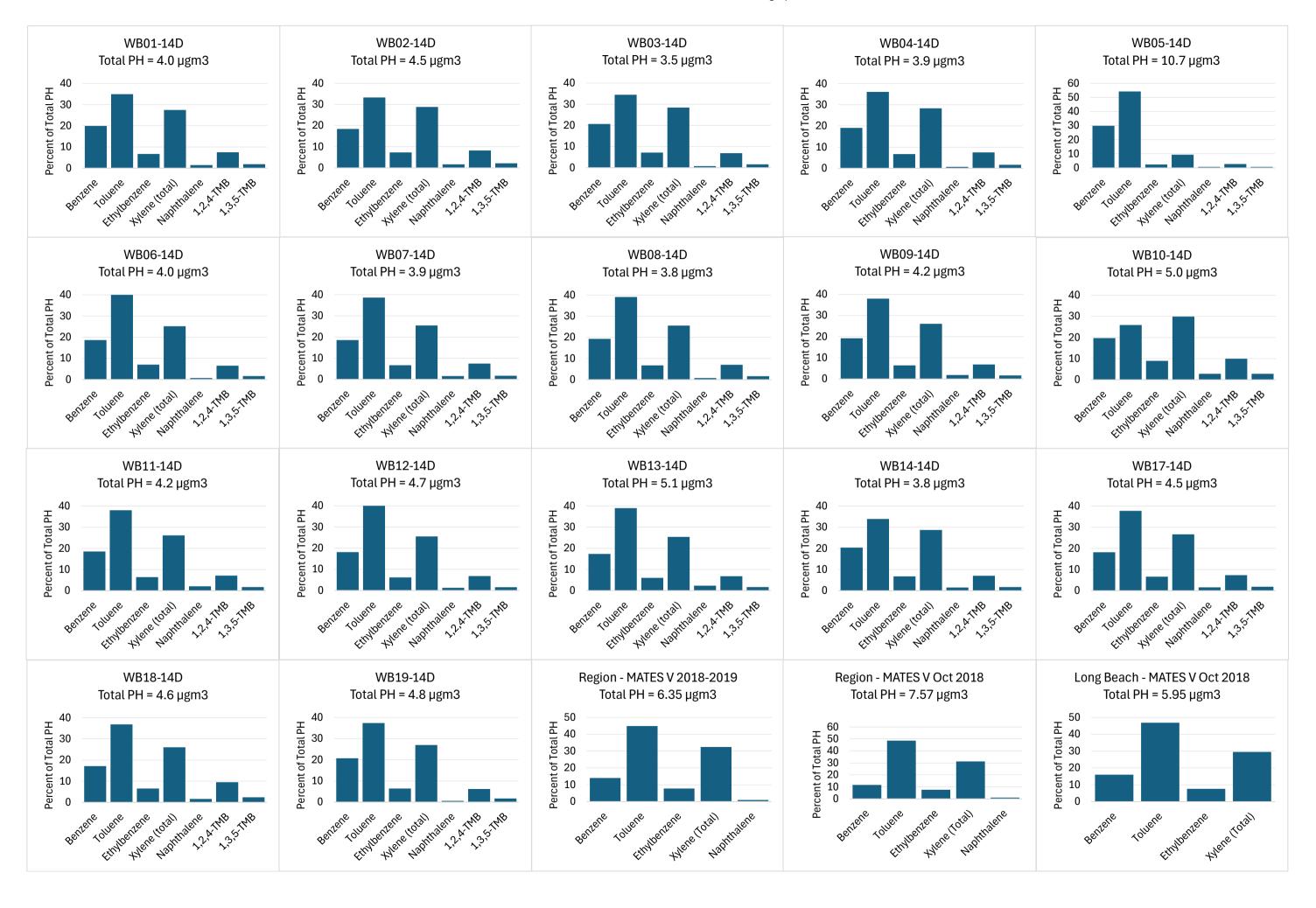



CHART17







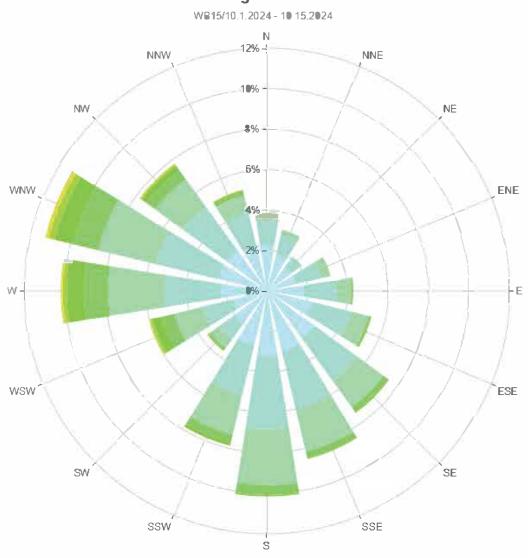


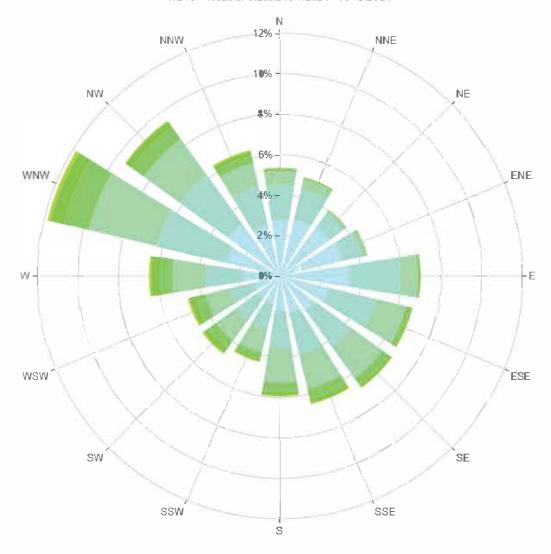
Chart 27 WB15 Windrose Diagram Signal Hill

> 27.024.0 - 27.0

21.0 - 24.0 18.0 - 21.0

15.0 - 18.0

6.0 - 9:0


3.0 - 6.0

■ 0.3 - 3.0

12.0 - 15.0 9.0 - 12.0

Chart 28 WB16 Windrose Diagram

Signal HillWB16 - Weather Statton/10 1.2024 - 10 15.2024

> 27.0

24.0 - 27.0

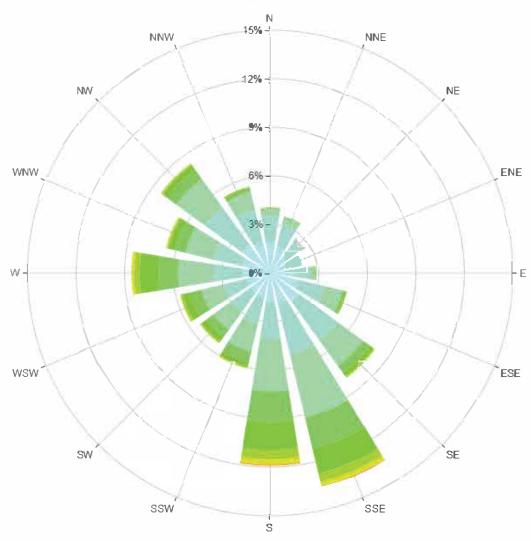
21.0 - 24.0

18.0 - 21.0

15.0 - 18.0

12.0 - 15.0

9.0 - 12.0


6.0 - 9.0

3.0 - 6.0

■ 0.3 - 3.0

Chart 29 WB17 Windrose Diagram Signal Hill

WB17 - Weather Station/10 1.2024 - 10 15.2024

> 27.0

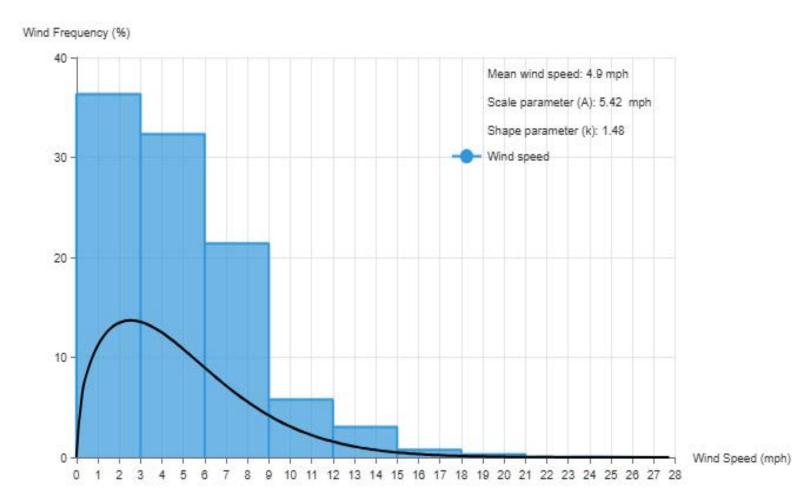
24.0 - 27.0

21.0 - 24.0

18.0 - 21.0

15.0 - 18.0

15.0 - 16.


12.0 - 15.0

9.0 - 12.0

6.0 - 9.0

3.0 - 6.●

0.3 - 3.0

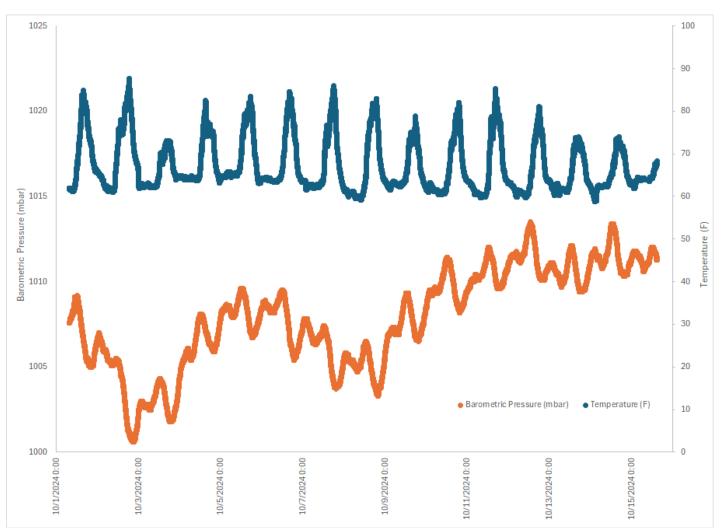



Chart 30 - WB15 Windspeed, Temperature, and Barometric Pressure

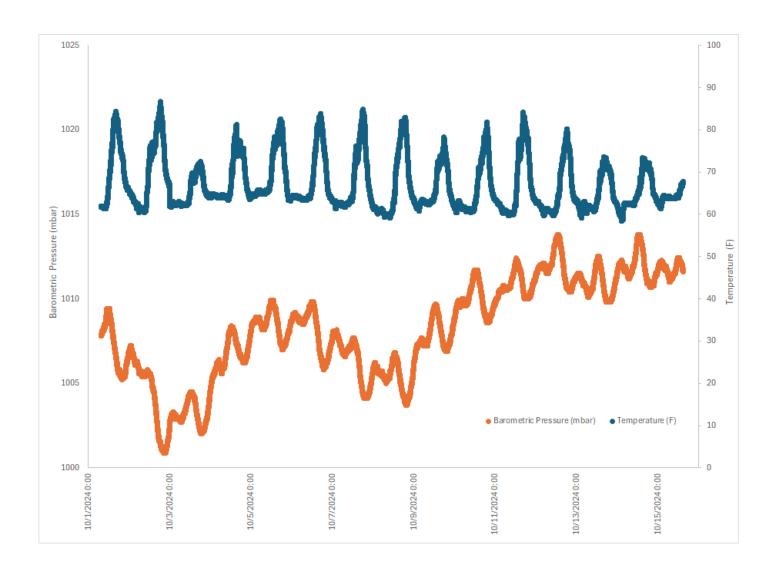
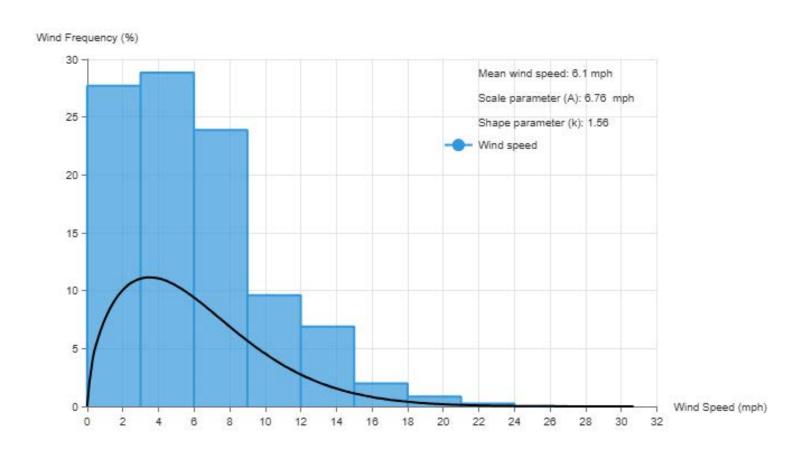
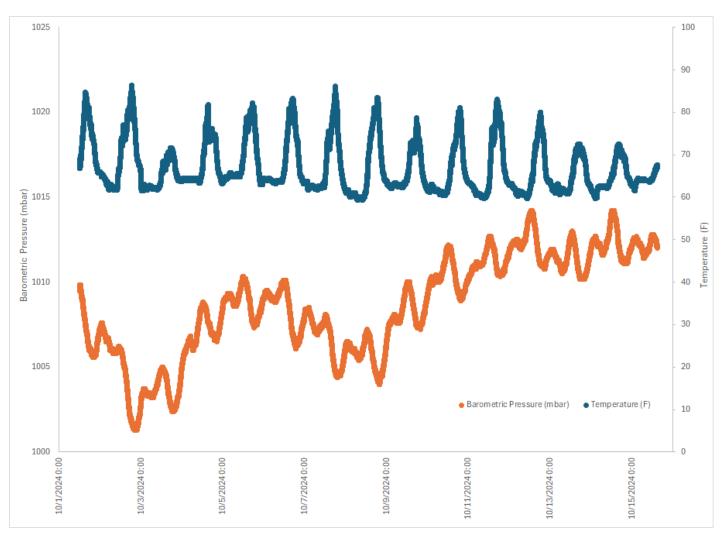
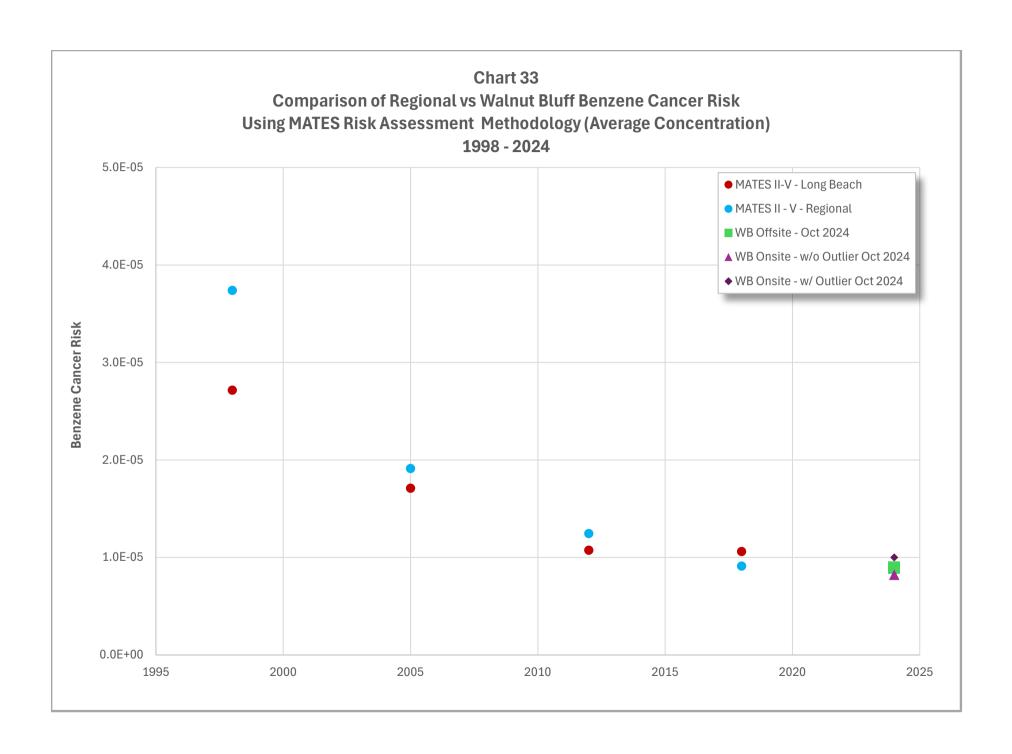
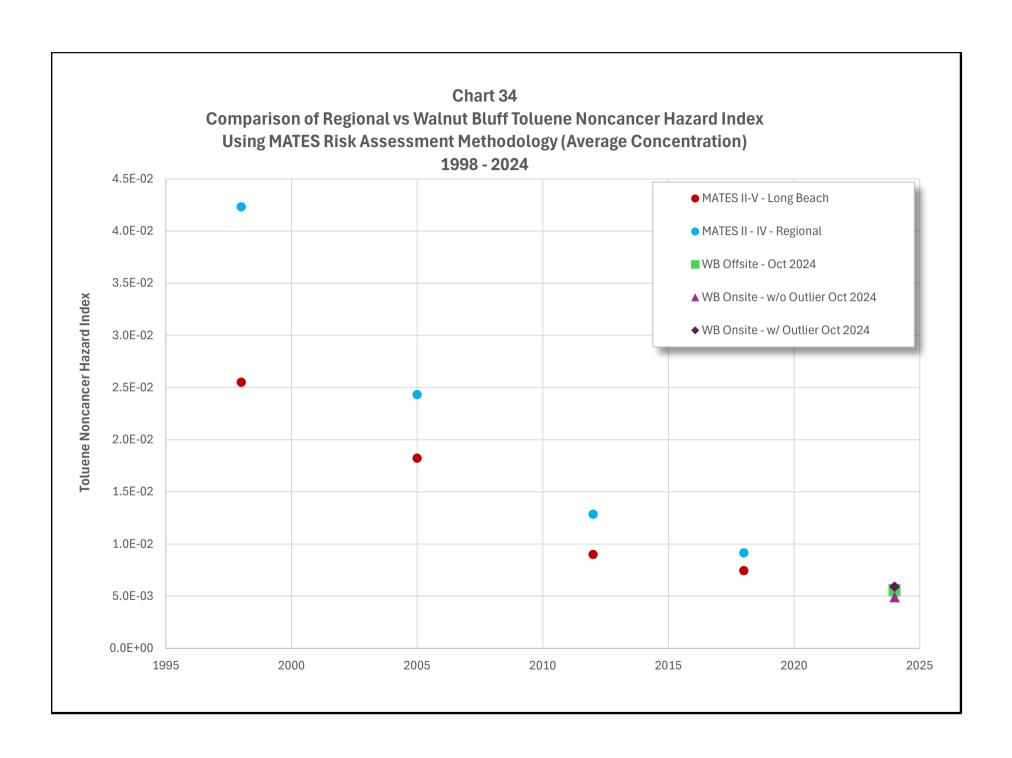
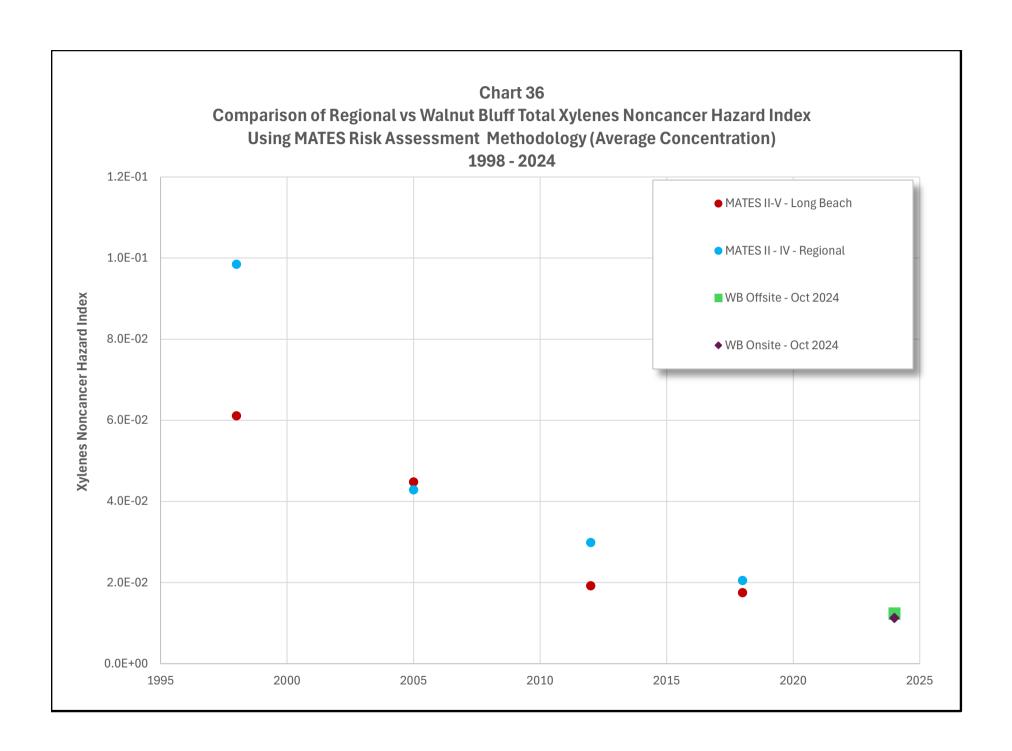
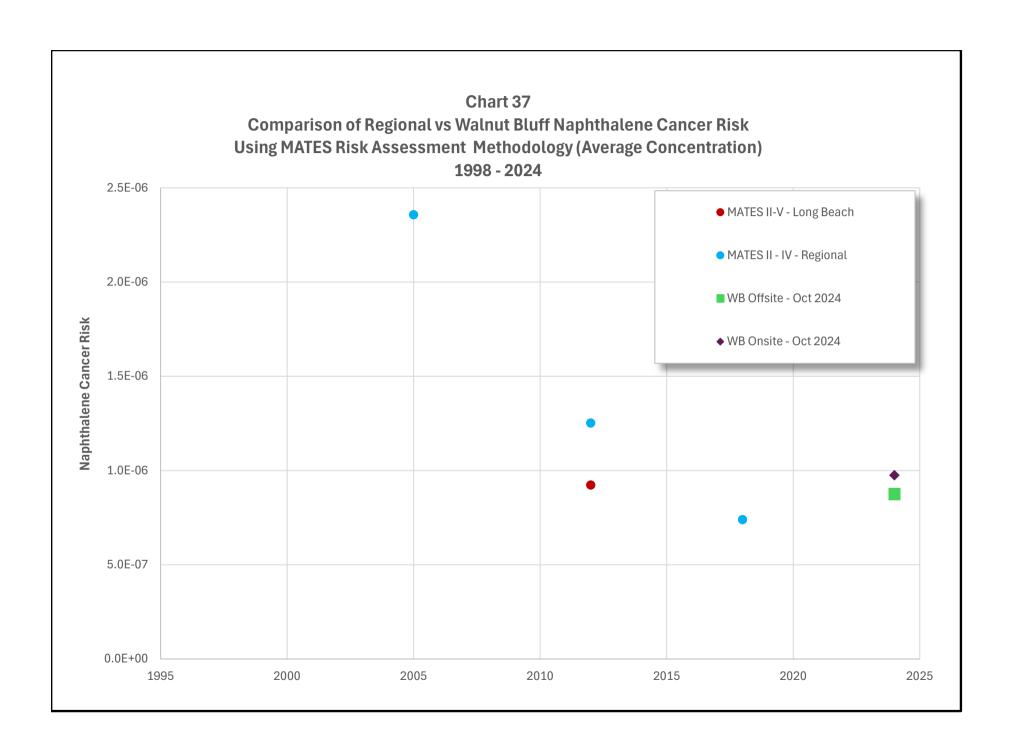
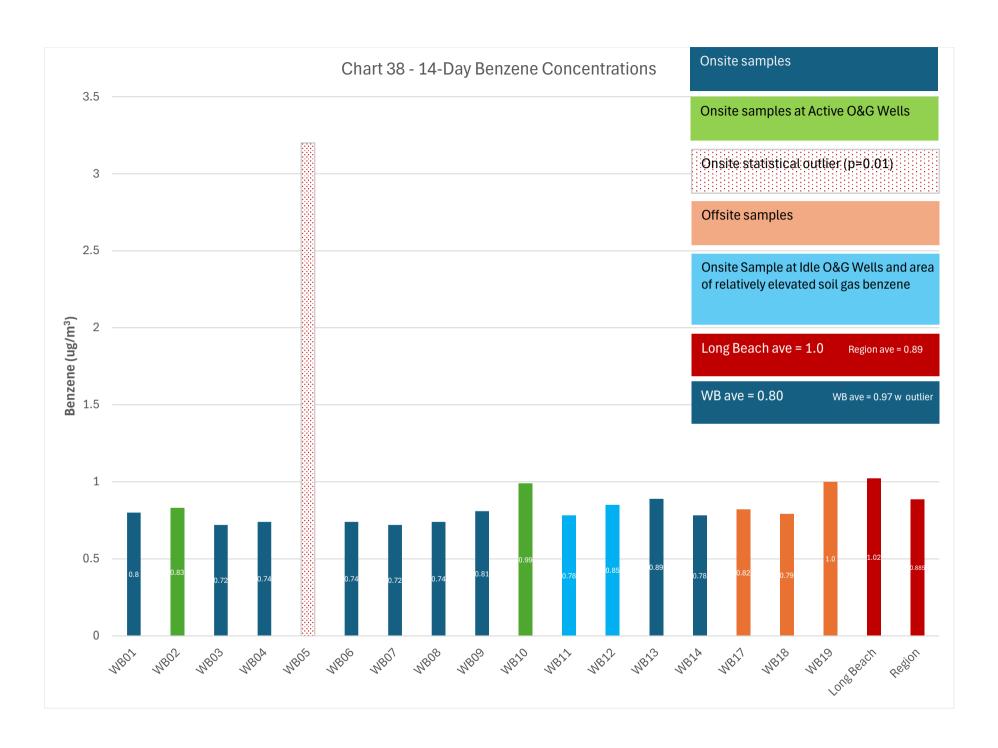



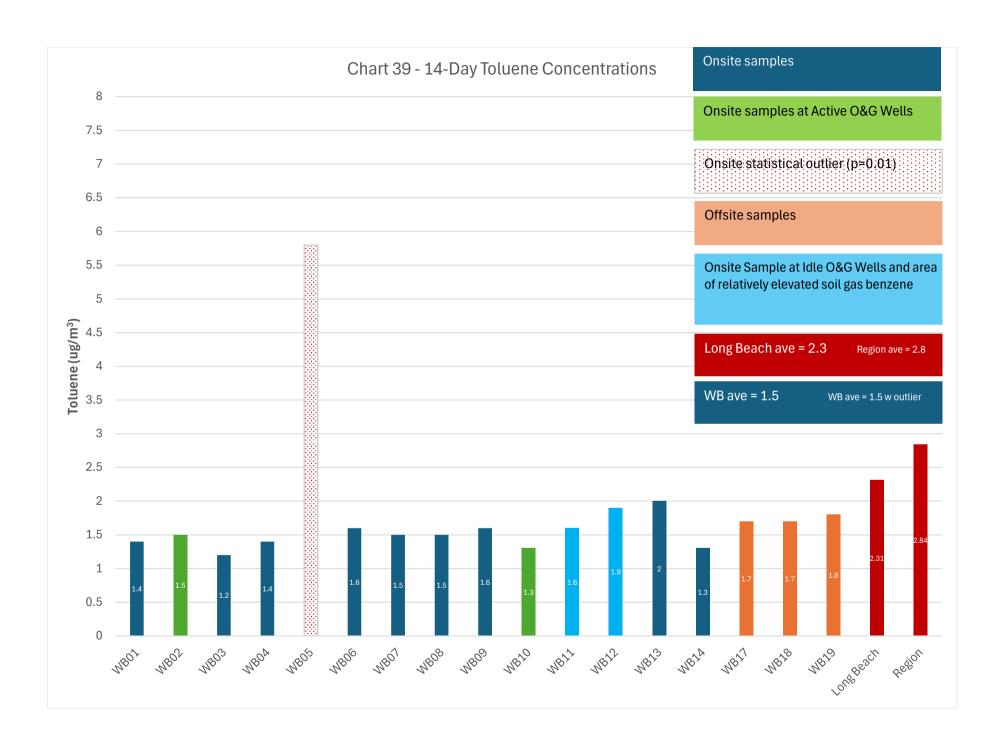
Chart 31 - WB16 Windspeed, Temperature, and Barometric Pressure

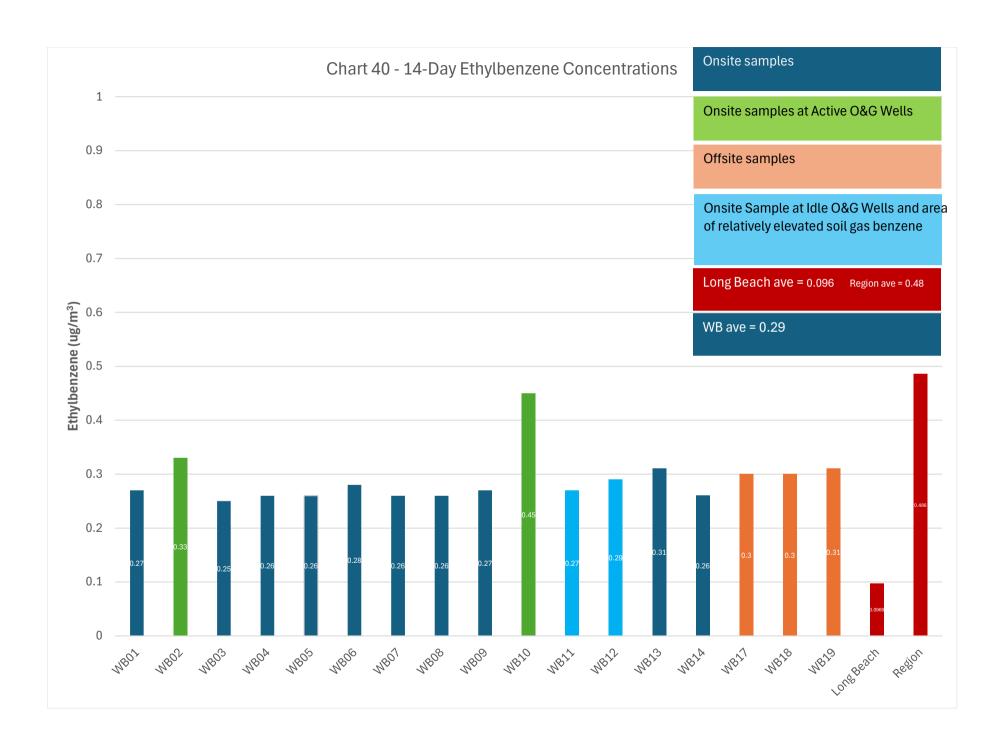




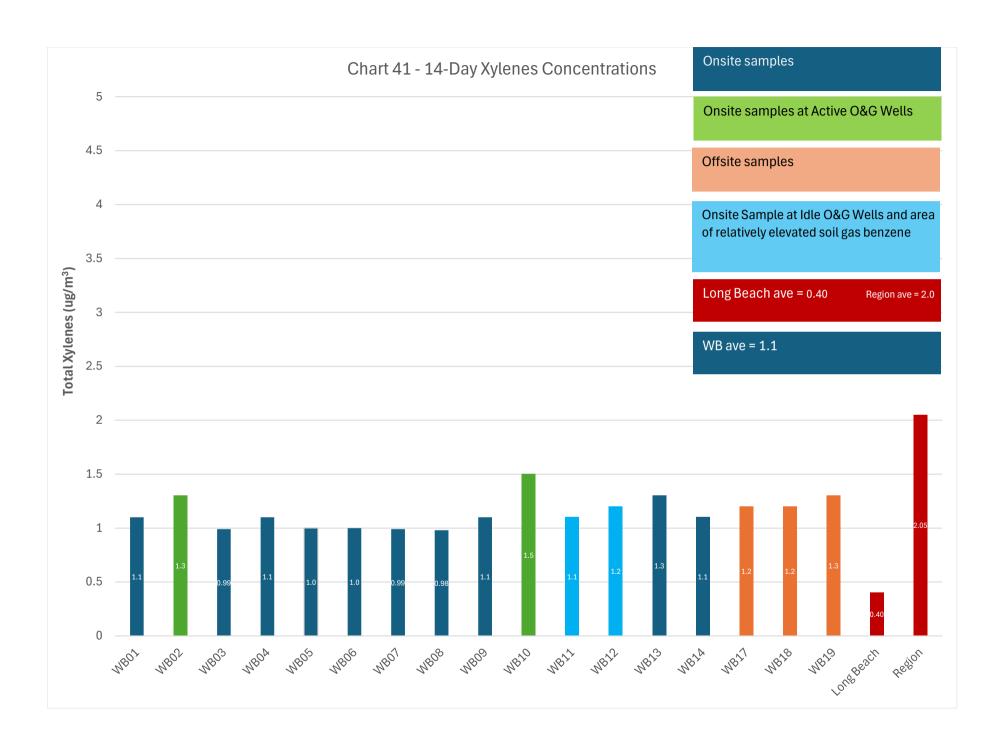


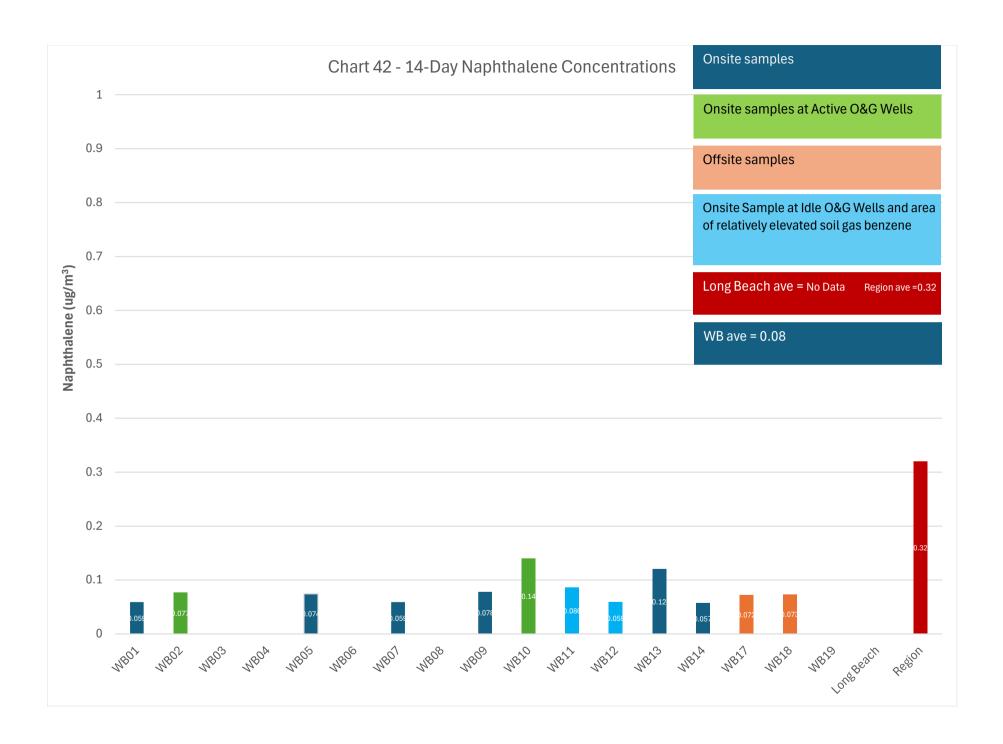

Chart 32 - WB17 Windspeed, Temperature, and Barometric Pressure

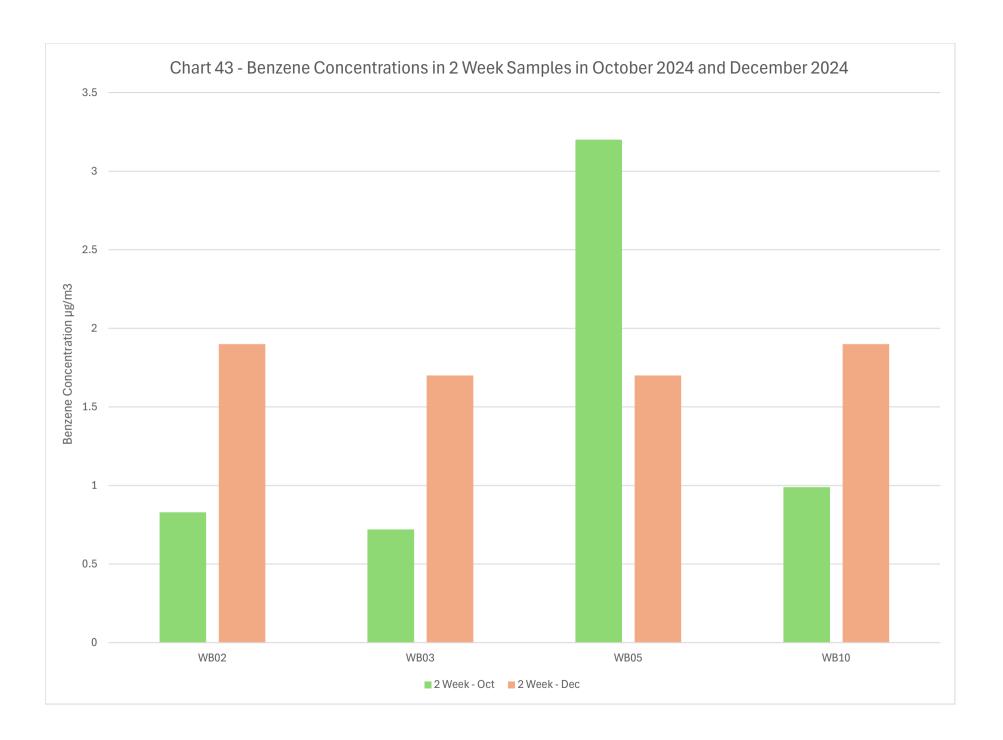




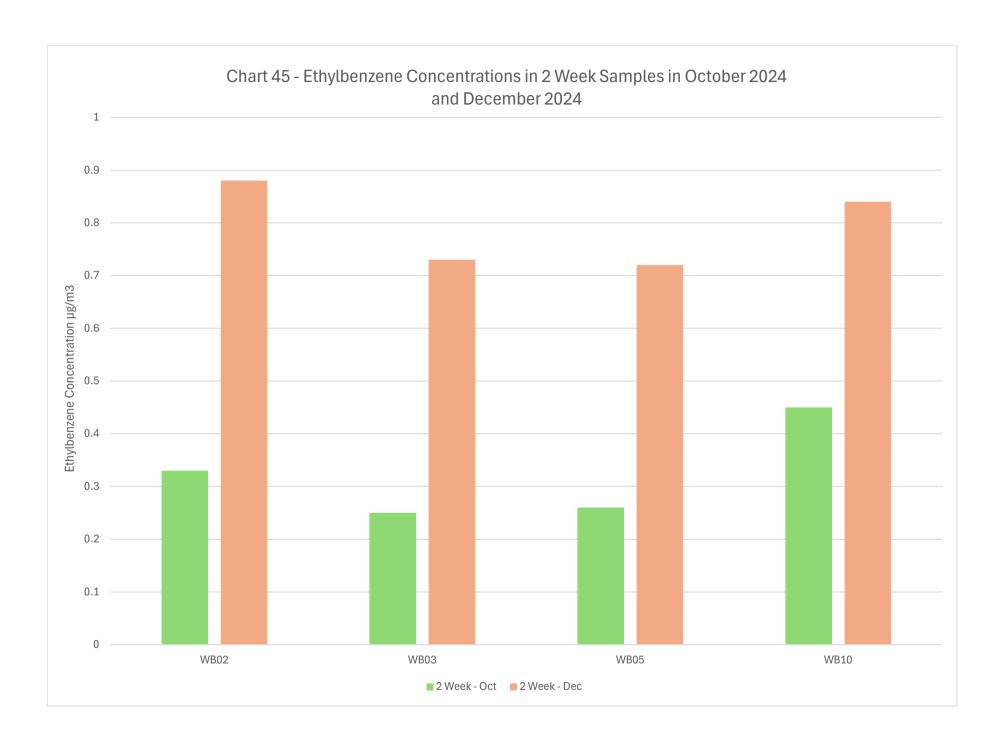


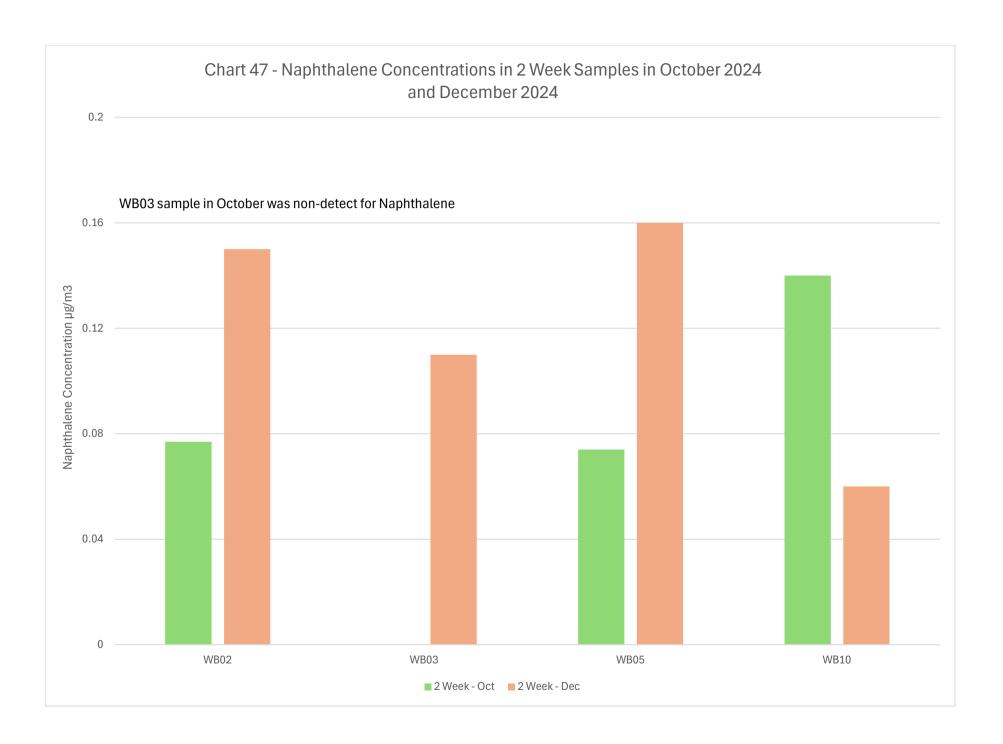


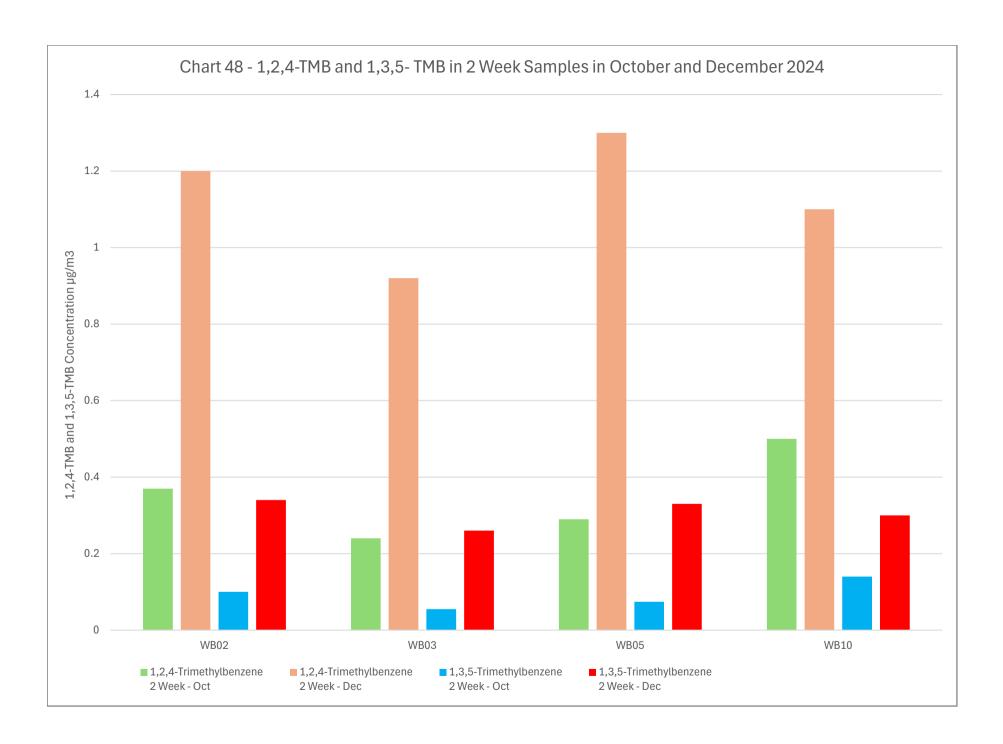


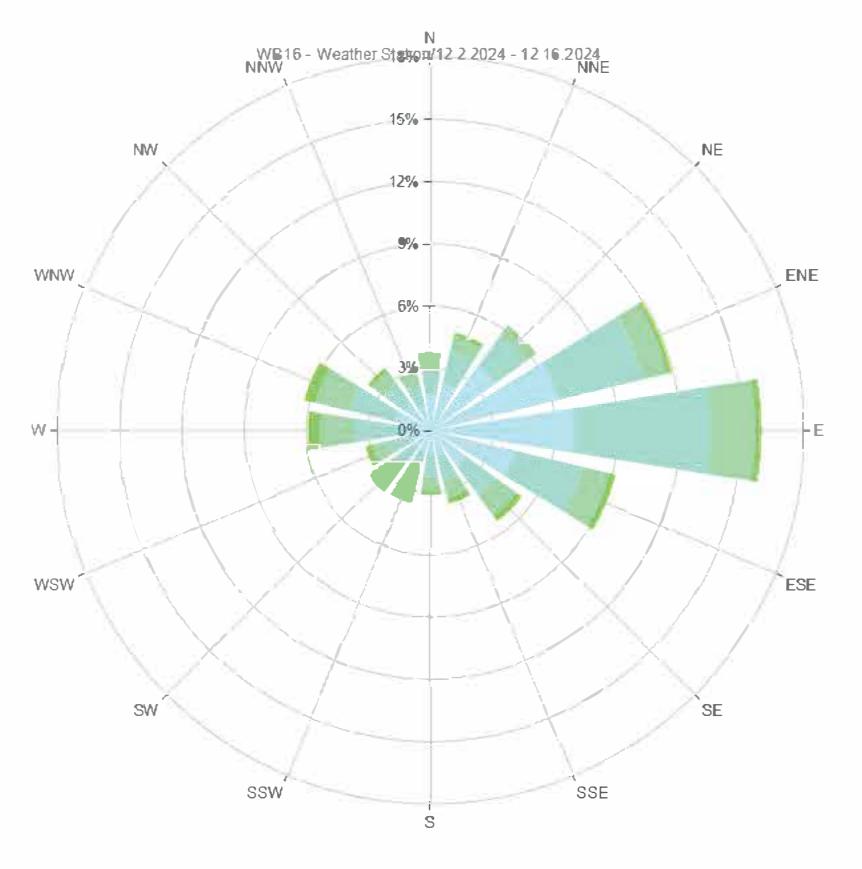


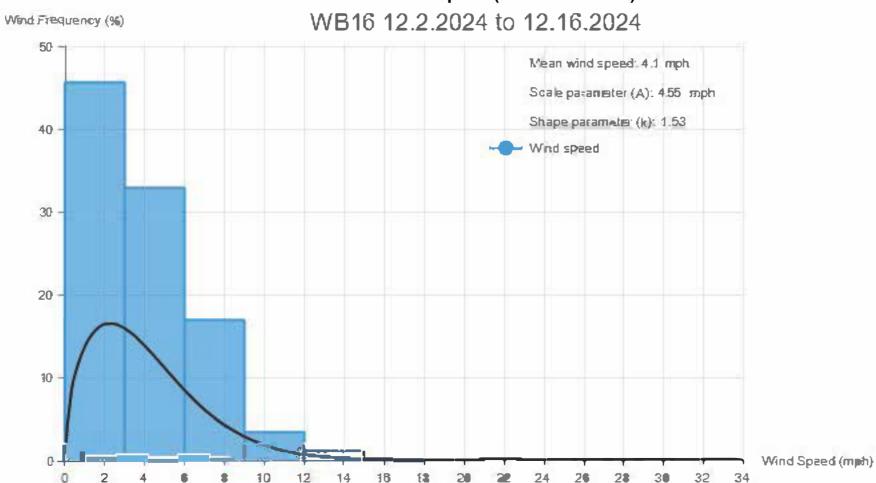


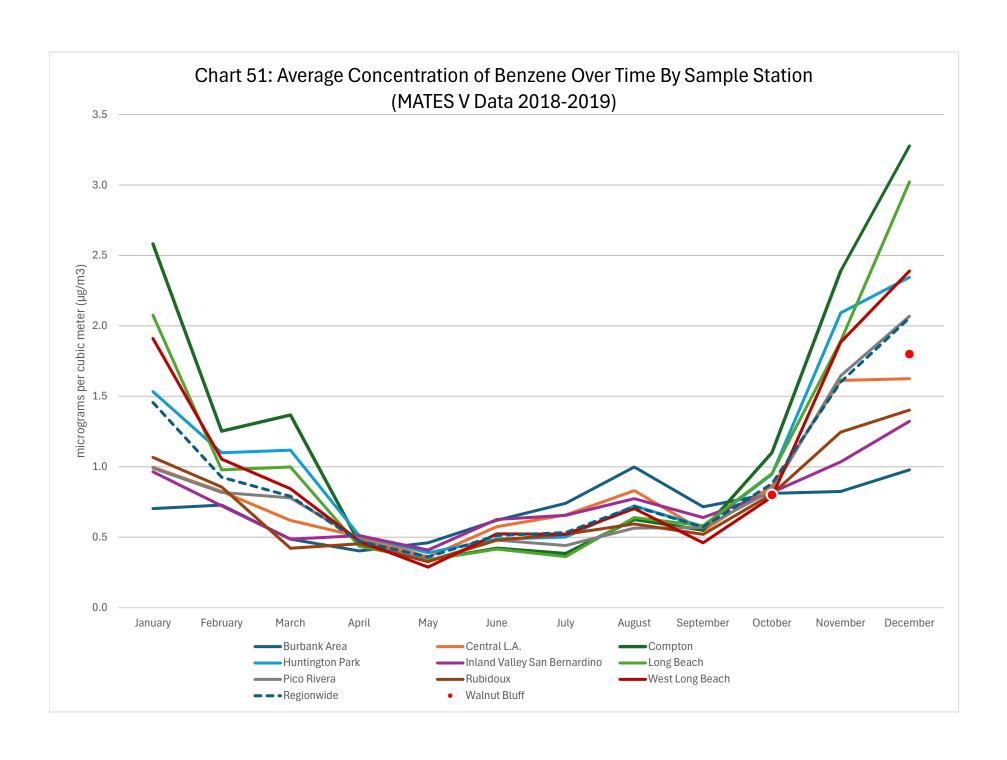


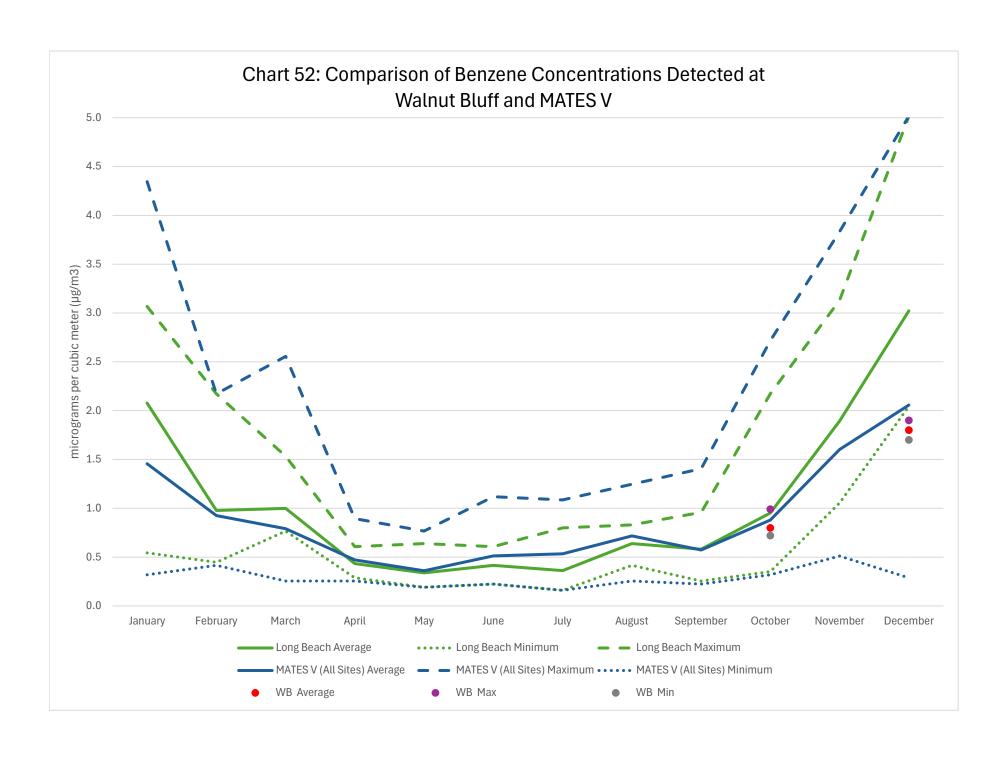









Chart 49 WB 16 Windrose Diagram (December 2024)



> 24.0 21.0 - 24.0 18.0 - 21.0 15.0 - 18.0 12.0 - 15.0 9.0 - 12.0 6.0 - 9.0 3.0 - 6.0 0.9 - 3.0

Chart 50 Windspeed (December 2024)

Appendix A

Field Data Sheets

2 Week Samples Ambient Air Sampling Form

ient Air Sampling Form

Project Name: Walnut Bluff Site Location: Signal Hill Date: 10/1124

Sampled by: Elizabeth Hwang			Weather/Temp (°F):			
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks	
WB17-14D	A70230	C70938	30	6	2 Weeks	
Time/Date	10/1/2 34	10/18/24	0940	1411727 TY		
Pressure (in HG)	30	15	8			
Comments:				-		
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)	
WB18-14D	A 70152	C70812	31	10	2 Weeks	
Time/Date	10/1/24, 10:20	10/10/21	1075/24	14/19/14/2 Bin		
Pressure (in HG)	31	17	(0			
Comments:						
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)	
WB81 - 14D	A70102	C70612	29	6	2 Weeks	
Time/Date	10/1/24, 10:44	10/9/24	10/10/24 13:16	10/15/24 1:05		
Pressure (in HG)	29	16	14	6		
Comments:						
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)	
WB10-14D	A7 0238	C70331	31	6	2 Weeks	
Time/Date	10/1124,10:49	10/9/24	10/10/24 13:45	10/15/24 11:12		
Pressure (in HG)	31	16	14	6		
Comments:						
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)	
WB 11-14D	A70404	C 70352	30	5	2 Weeks	
Time/Date	10/1/2410:55	10/9/24	10/10/24 14:14	10/15/24 [1:16		
Pressure (in HG)	30	16	14	5		
Comments:						
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)	
WB12-14D	A70144	C70908	31	8	2 Weeks	
Time/Date	10/1/24	10/9/24	10/10/24/13:50	10/15/24		
Pressure (in HG)	31	17	15.5	б		
Comments:						
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)	
UB 13-14D	A 70531	C70249	30	7	2 Weeks	
	10/1/241:10	09:13	10/10/24	10/15/24/11:24		
	30		15			
Pressure (in HG)	20	17.5	17	7		

2 week Samples

Ambient Air Sampling Form

Sampled by: Eliza			Weather/Temp (°F		Date
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB14-14D	A70014	C70309	30	5	2 Weeks
Time/Date	10/1/24	10/9/24	30 10/10/24 13:56	10/15/24	
Pressure (in HG)	30	14	13	5	
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WBQ2-14D	A70413	C70903	31	6	2 Weeks
Time/Date	10/1/24	10/9/24	10/10/24/2:51	10/15/24 34	
Pressure (in HG)	31	17	15	6	
Comments:		17	17		
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WBD1-14D	A70124	C70196	30	8	ZWeeks
Time/Date	10/1/24 11:26	10/9/24	10/10/24 /1:49	16/15/24/11:37	
Pressure (in HG)	30	18	16	8	
Comments:		10	1 7 9		
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB03-14D	A70027	C70059	31	7	2 Weeks
Time/Date	10/1/24	10/9/24	10/10/24/2:41	16/15/24 11:46	
Pressure (in HG)	31	17	15	7	
Comments:	01				
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB 05-14D	A 70163	C70800	31	(0	2 Weeks
Time/Date	10/1/24 11:43	10/9/24	10/10/24 12:49	10/15/24 12:01	
Pressure (in HG)	31	19	17	10	
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB04-14	A70110	C70932	28	7	2 Weeks
Time/Date	10/1/24	10/9/24	10/10/24	10/15/24 11:50	
Pressure (in HG)	28	16	15	7	
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
W806-14D	A70403	C70916	30	3	2 weeks
Time/Date	10/1/24 11:57	10/9/24	13:06	10/15/24 11:56	
Pressure (in HG)	30	15	13.5	3	
Comments:					

2 week samples

Ambient Air Sampling Form

Project Name: WMn	of Bluff	Site Location:	Signal Hill		Date:
Sampled by: £liza	beth Hwang		Weather/Temp (°F	=):	
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
W807-14D	A 70248	C70901	31	7	2 Weeks
Time/Date	10/1/24 11:57	10/9/24 08:45	10/10/24	10/15/24	
Pressure (in HG)	31	18	16	7	
Comments:			· ·		
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB08-14D	A 700 79	C70914	30	8	2 weeks
Time/Date	10/1/24	10/9/24	10/10/24/13:12	10/15/24/2:11	
Pressure (in HG)	30	17	19	8	
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB19-14D	AZOLIS	C70081	30	9	2 Weeks
Time/Date	14:51	10/9/24 09:53	30 10/10/24 14:23	10/15/24/444	
Pressure (in HG)	30	19	17	9	
Comments:		Z S		MEN TO SERVICE STREET	
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Time/Date				1971/24	
Pressure (in HG)				300-	
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Time/Date				1	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Time/Date				2.3	
Pressure (in HG)					
Comments:					
	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Sample ID	Walliou #	Gainstei #	Start Fressure	Liiu Fiessule	Duration (hr or weeks)
Time/Date					
Pressure (in HG)				17/19/19	
Comments:					

24Hr samples Ambient Air Sampling Form

Date: 10/9/24 Project Name: Walnut Bluff Site Location: Signal Hill Sampled by Gizzbeth, Hugue Wischer Hogger Woodbor/Tomp (°F):

Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
VB01-24H	6024fc	0626	30	1	24 H
Time/Date	10/90/24 33	10/10/24	10/0p/LM 12:33	10/10/24 11:48	
Pressure (in HG)	30	X	10.11		
Comments:		-1			
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB02-24H	20459	813	30	2	24 Hr
Time/Date	2019	5(0	10/9/24 12:36	10/10/24 /2:38	
Pressure (in HG)			14.36		
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
•		0794	30	2	24 Hr
WB 03-24 Time/Date	13 897	0 19-1	10/7/24 12:38	10/10/24 /2:42	
Pressure (in HG)			12:38	75.75	
Comments:					
	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Sample ID	S ARM COLUMN ACCOUNT	THE PARTY OF THE P	30	3	24 Hr
WB 04-24 H	6026fc	37493	10/9/24 12:42	10/10/24 12:49	
Time/Date			12.92	12.77	
Pressure (in HG) Comments:					
		0 1-4	Start Pressure	End Pressure	Duration (hr or weeks)
Sample ID	Manifold #	Canister#		3	THE RESERVE THE PARTY OF THE PA
WB05-24H	18716	c8346	29 10/9/24 12:46	10/10/24 12:46	24 Hr
Time/Date			12:46	12:46	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB 06-24H	6027fc	0747	10/9/24 17:44	10/10/24	24 Hr
Time/Date			13:04	13:05	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
WB07-24H	10001	0616	30	2	24Hr
Time/Date			10/9/24 13:06	13:08	
Pressure (in HG)					
Comments:					

Ambient Air Sampling Form

Date: 10/9/24 / 6/10/24 Site Location: Signal Hill Project Name: Walnut Bluff

Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
W308-24H	6030fc	35416	30	2	
Time/Date	000010	09/110	10/9/24	2 10110124 13:11	
Pressure (in HG)					
Comments:			-		
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB09-24	6022fc	0762	30	2	
Time/Date			10/9/24/13:17	10/10/24 20	
Pressure (in HG)					
Comments:			10.0		
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB 10-24 H	18714	0/61	30	2	
Time/Date			10/9/24/4:07	10/1924 13:44	1-
Pressure (in HG)				1	
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
1011-244	10012	0684	30	3	
Time/Date	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10/9/24	10/10/24 14:13	
Pressure (in HG)					
Comments:	22.00		West 4		
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB 12-24H	5982	27754	30	2.	
Time/Date			10/9/24 14:14	10/10/24/12:30	
Pressure (in HG)			- Joseph Hill		
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB 13-24H	6031	0681	30	1	
Time/Date			10/9/24	10/19/24/3:50	Market Land Control
Pressure (in HG)			- A A		
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB14-24H	6025fc	0484	30	2	
Time/Date		7 1 -	10/9/24 14:19	13:55	
Pressure (in HG)			The spiles		
Comments:		227			

Ambient Air Sampling Form

Project Name: Walnut Bluff Site Location: Signal Hill Sampled by: Elizabeth Hwana / Olivoa Haan Weather/Temp (°F): Date: 10/9/24

Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
NB19-24H	5980	819	30	2	
Time/Date			1019/12/14:30	10/10/24 14:21	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
UB17-24H	20197	0685	31	2	
Time/Date			10/9/24 14:47	10/10/24/43/	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB18-14H	6029fc	27756	30	1.5	
Time/Date			10/9/24 14:58	10/10/24	
Pressure (in HG)	1 1				
Comments:			100		
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Time/Date					
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Time/Date					
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Time/Date					
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Time/Date					
Pressure (in HG)					
Comments:					

IHr Samples

Ambient Air Sampling Form

Project Name: Walnut BIVIT Site Location: Signal Hill Date: 10/116/24

Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB 07-14	13685	0790	Z 8 10/9/24 08:36	4	140
Time/Date	13007		10/9/24 08:30	10/9/24	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB 01 - 1H	18718	0787	29	5	1 Hr
Time/Date			10/9/24	10/4/29	
Pressure (in HG)					
Comments:			40 Day 32		
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB13-1H	13676	49967	28	4.5	1 Hr
Time/Date			10/9/24 09:10	10/9/24 10:09	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB 14-1H	20201	802	29	5	1Hr
Time/Date			10/9/24 09:18	10/9/24	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB19-1H	6032	0744	30 10/9/24 09:52	10/9/24/10:54	1 Hr
Time/Date			10/9/24 09:52	10/9/24 10:54	
Pressure (in HG)			- 50 - 0 - 15		
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
NBO 2-1H	6057	0796	29	4	IHr
Time/Date			10:31	1019/24	
Pressure (in HG)			1783-151		
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
VB 0 3-1H	5983	0803	27	4	1Hr
Time/Date			10/9/24 10:35	10/9/24	
Pressure (in HG)					
Comments:			-	1	

1 Hr Samples

Ambient Air Sampling Form

Project Name: Walnut Bluff Site Location: Signal Hill Date: 10/9/24

Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
WB06-1H	13 686	43531	30	4	IHr
Time/Date	13 000	13301	10/9/24 0:43	10/9/24	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
WB04-1H	6016	23803	29	4	1Hr
Time/Date	3014		29	10/9/24	
Pressure (in HG)		7 7			
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
W805-1H	6013	37503	29	41	1 40
Time/Date			10/9/24	10/9/24	
Pressure (in HG)			6 = 6 = 782		
Comments:	and the				
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
W808-1H	17517	49958	29	4	1 Hr
Time/Date			10/9/24 11:11	10/9/24 12:11	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
WB10-1H	17512	0679	28	3	1 Hr
Time/Date			10/9/24 /1:17	10/9/24 12:20	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
WB09-1H	7629	0800	29	4	1Hr
Time/Date			10/9/24 11:22	10/9/24	
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks
WB 11-1H	18715	35427	27	5	1Hr
Time/Date			10/9/24	1019124	
Pressure (in HG)					
Comments:					

IHR samples Ambient Air Sampling Form

Date: 10/9/24 __ Site Location: <u>Signal Hill</u> Project Name: Walnut Bluff

ampled by: <u>Aurub</u>	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
WB12-1H	13694	C8345	28	3	1 Hr
Time/Date	13011		10/9/24	10/9/24 2:58	
Pressure (in HG)				100	
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
	13898	37519	29	2	ltr
WB17-(H Time/Date	13010	37911	10/9/24 /3:30	10/9/24	
Pressure (in HG)			73.55		
Comments:					
	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Sample ID	CONTRACTOR OF STREET	250.76.000.00	29	3	1 Hv
WB18-1H	13677	0761	1.1.124	10/9/24 14:56	
Time/Date			13:52	7-1.90	
Pressure (in HG)					
Comments:			1 0 15	End Pressure	Duration (hr or weeks)
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (in or weeks)
Time/Date				THE RESERVE	
Pressure (in HG)				2.5	
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Time/Date					
Pressure (in HG)					
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Time/Date					
Pressure (in HG)	1000				
Comments:					
Sample ID	Manifold #	Canister#	Start Pressure	End Pressure	Duration (hr or weeks)
Time/Date					
Pressure (in HG)					
Comments:					

Appendix B

Quality Assurance Evaluation of Laboratory Data

<u>Laboratory Data Review Checklist</u> <u>for Air and Soil Vapor Samples</u>

Site Name:
Walnut Bluff
Date:
12-11-2024
Consultant Firm:
Catalyst Environmental Solutions
Completed By (Name):
Yola Bayram
Laboratory Name:
Enthalpy Analytical Laboratory
_aboratory Report Number:
518235
Laboratory Report Date:
10/22/24

Page 1 132

Labo	Laboratory Report Number: 518235 Laboratory Report Date:		Provide an explanation in comment box
5			for any N/A or No box checked.
Labo			
1	0/22/24		
1. l	aboratory		
<u>-</u>	<u>.</u>		tified laboratory receive and perform all of the submitted sample
	Yes	■ No□ N/A□	Comments:
	alterna	•	ferred to another "network" laboratory or sub-contracted to an the laboratory performing the analyses ELAP or NELAP-certified? Comments:
2. <u>(</u>	Chain of Cust	ody (CoC)	
	a. CoC info	ormation complete	ed, signed, and dated (including released/received by)?
	Yes	■ No□ N/A□	Comments:
	b. Correct	: analyses requeste	ed per approved Work Plan?
	Yes	■ No□ N/A□	Comments:
3. <u>L</u>	<u>aboratory Sa</u>	ample Receipt Doc	<u>cumentation</u>
	caniste		ented? (e.g., Samples collected in gas tight, opaque/dark Summa riate container? Canister vacuum/pressure checked, recorded upon open valves?)
	Yes	■ No□ N/A□	Comments:
	b. If samp	le condition comp	romised, is Data quality or usability affected?

Page 2 133

abora	aboratory Report Number: 518235		Provide an explanation in comment box				
51			for any N/A or No box checked.				
_abora	ator	ry Report Date:					
10)/22	2/24					
4.	Ca	se Narrative					
	a.	Present and understandab	ole?				
		Yes No□ N/A□	Comments:				
	h.	Discrenancies errors and	Lab QC failures identified by the lab?				
	υ.	Yes No□ N/A□	If Yes, describe errors. Comments:				
		1000 1100 11,100	ii res, describe errors. comments.				
	c.	Does Lab describe correcti	ive actions implemented?				
		Yes■ No□ N/A□	If Yes, describe corrective actions. Comments:				
	d.	Described impact to data of	quality/usability according to the case narrative.				
	No	o issues encountered					
5. <u>Sa</u>	mp	<u>les Results</u>					
	a.	Correct analyses performe	ed/reported as requested on COC?				
		Yes■ No□ N/A□	Comments:				
	b.	All applicable holding time	es met?				
		Yes■ No□ N/A□	Comments:				
	c.	Are the reported reporting the project, as defined in t	g limits (RLs) less than the data quality objectives or screening level for the approved work plan?				
		Yes□ No□ N/A□	Comments:				
	Se	ee attached. none of	the analytes are related to petroleum hydrocarbons				

Laboratory Report Number:	Provide an explanation in comment box
518235	for any N/A or No box checked.
Laboratory Report Date:	
10/22/24	
d. Did Lab dilute the samples	?
Yes No□ N/A□	Comments:
e. Describe impact to data qu	iality or usability.:
no impact	
6. Lab QC Samples	
a. Lab Method Blank	
	ported nor matrix, analysis and 20 samples?
<u>_</u>	ported per matrix, analysis and 20 samples?
Yes■ No□ N/A□	Comments:
ii All mothed blook ross	Its loss than BL Lab OA/OC exitoria, and project specified objectives?
<u>_</u>	Its less than RL, Lab QA/QC criteria, and project specified objectives?
Yes■ No□ N/A□	Comments:
2	
iii. Describe impact to da	ta quality from Method Blank results.
None	
b. Laboratory Control Sample	P/Dunlicate (LCS/LCSD)
	CSD reported per matrix, analysis, and 20 samples?
Yes No□ N/A□	Comments:
Tese Not NyAti	Comments.
ii. Accuracy – All percent project specified object	t recoveries (%R) reported and within method or laboratory limits and ctives, if applicable?
Yes No□ N/A□	Comments:

poratory Report Number:	Provide an explanation in comment box
518235	for any N/A or No box checked.
ooratory Report Date:	
10/22/24	
	percent differences (RPD) reported and less than method or roject specified objectives, if applicable?
Yes■ No□ N/A□	Comments:
iv. If %R or RPD is outside	acceptable limits, what samples are affected?:
v. Do the affected sample Yes□ No□ N/A■	e(s) have data flags? If so, are the data flags clearly defined? Comments:
vii. Describe impact to data	quality or usability from LCS/LCSD results?:
c. Lab Surrogates – VOCs only i. Are surrogate recoveri	es reported for VOC analyses – field, QC and laboratory samples?
Yes No□ N/A□	Comments:
ii. Accuracy – All percent project specified objec	recoveries (%R) reported and within method or laboratory limits and tives, if applicable?
Yes■ No□ N/A□	Comments:
iii. Describe impacts to da	ata quality or usability from VOC surrogate data?

Laboratory Report Number:	Provide an explanation in comment box					
518235	for any N/A or No box checked.					
Laboratory Report Date:						
10/22/24						
7. Field QC Samples						
a. Field Duplicate						
i. Field duplicate submit	ted per matrix, analysis, and approved Work Plan?					
Yes□ No□ N/A■	Comments:					
No field duplicate						
ii. Submitted blind to lab	?					
Yes□ No□ N/A■	Comments:					
(Recommended: 30%	percent differences (RPD) less than specified project objectives? air and soil vapor) Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$					
	Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration					
Yes□ No□ N/A■	Comments:					
TCSE NOE NYAE	comments.					
iv. Describe impact to da	ta quality or usability from Field Duplicate data.:					
· · · · <u>-</u>	le, a comment stating why must be entered below)?					
Yes□ No□ N/A■	Comments:					
i. Describe impact to da	ata quality or usability from Field Blank results?:					
no field blank submitted	per work plan					

Laboratory Report Number:	Provide an explanation in comment box
518235	for any N/A or No box checked.
Laboratory Report Date:	
10/22/24	
8. <u>Data Flags/Qualifiers</u>	
a. Are the flags clearly defined	d and appropriate?
Yes ■ No□ N/A□	Comments:
b. Do the affected sample(s) h	
Yes■ No□ N/A□	Comments:

518235																						
310233																						
Sample ID	Units	dtscC	dtscNC	RSLc	RSLnc	WB01-14D	WB02-14D	WB03-14D	WB04-14D	WB05-14D	WB06-14D	WB07-14D	WB08-14D	WB09-14D	WB10-14D	WB11-14D	WB12-14D	WB13-14D	WB14-14D	WB17-14D	WB18-14D	WB19-14D
Sample Date						10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024	10/15/2024
Lab Sample ID						518235-001	518235-002	518235-003	518235-004	518235-005	518235-006	518235-007	518235-008	518235-009	518235-010	518235-011	518235-012	518235-013	518235-014	518235-015	518235-016	518235-017
1,1,1,2-Tetrachloroethane	ug/m3	0.38	130	0.38		0.076	0.069	0.069	0.069	0.082	0.069	0.069	0.076	0.069	0.069	0.069	0.069	0.076	0.069	0.076	0.082	0.076
1,1,1-Trichloroethane	ug/m3		1000		5200	0.06	0.055	0.055	0.055	0.065	0.055	0.055	0.06	0.055	0.055	0.055	0.055	0.06	0.055	0.06	0.065	0.06
1,1,2,2-Tetrachloroethane	ug/m3	0.048	83	0.048		0.076	0.069	0.069	0.069	0.082	0.069	0.069	0.076	0.069	0.069	0.069	0.069	0.076	0.069	0.076	0.082	0.076
1,1,2-Trichloroethane	ug/m3			0.18	0.21	0.06	0.055	0.055	0.055	0.065	0.055	0.055	0.06	0.055	0.055	0.055	0.055	0.06	0.055	0.06	0.065	0.06
1,1-Dichloroethane	ug/m3	1.8	830	1.8		0.045	0.04	0.04	0.04	0.049	0.04	0.04	0.045	0.04	0.04	0.04	0.04	0.045	0.04	0.045	0.049	0.045
1,1-Dichloroethene	ug/m3		73		4.1	0.044	0.04	0.04	0.04	0.048	0.04	0.04	0.044	0.04	0.04	0.04	0.04	0.044	0.04	0.044	0.048	0.044
1,2,4-Trichlorobenzene	ug/m3	0.38	2.1		2.1	0.082	0.074	0.074	0.074	0.089	0.074	0.074	0.082	0.074	0.074	0.074	0.074	0.082	0.074	0.082	0.089	0.082
1,2,4-Trimethylbenzene	ug/m3				63	0.3	0.37	0.24	0.29	0.29	0.26	0.29	0.27	0.29	0.5	0.3	0.32	0.35	0.27	0.33	0.44	0.3
1,2-Dibromoethane	ug/m3		0.83	0.0047	9.4	0.085	0.077	0.077	0.077	0.092	0.077	0.077	0.085	0.077	0.077	0.077	0.077	0.085	0.077	0.085	0.092	0.085
1,2-Dichlorobenzene	ug/m3				210	0.066	0.06	0.06	0.06	0.072	0.06	0.06	0.066	0.06	0.06	0.06	0.06	0.066	0.06	0.066	0.072	0.066
1,2-Dichloroethane	ug/m3			0.11	7.3	0.063	0.066	0.062	0.062	0.061	0.062	0.061	0.062	0.063	0.072	0.061	0.062	0.065	0.063	0.062	0.062	0.067
1,2-Dichloropropane	ug/m3			0.76	4.2	0.051	0.046	0.046	0.046	0.055	0.046	0.046	0.051	0.046	0.046	0.046	0.046	0.051	0.046	0.051	0.055	0.051
1,3,5-Trimethylbenzene	ug/m3				63	0.074	0.1	0.055	0.065	0.074	0.065	0.065	0.061	0.068	0.14	0.073	0.074	0.085	0.067	0.085	0.11	0.081
1,3-Dichlorobenzene	ug/m3		-			0.066	0.06	0.06	0.06	0.072	0.06	0.06	0.066	0.06	0.06	0.06	0.06	0.066	0.06	0.066	0.072	0.066
1,4-Dichlorobenzene	ug/m3			0.26	830	0.066	0.06	0.06	0.06	0.072	0.06	0.06	0.066	0.06	0.06	0.06	0.06	0.066	0.06	0.066	0.072	0.066
2-Chlorotoluene	ug/m3		83			0.057	0.052	0.052	0.052	0.062	0.052	0.052	0.057	0.052	0.052	0.052	0.052	0.057	0.052	0.057	0.062	0.057
Benzene	ug/m3	0.097	3.1	0.36	31	0.8	0.83	0.72	0.74	3.2	0.74	0.72	0.74	0.81	0.99	0.78	0.85	0.89	0.78	0.82	0.79	1
Benzyl chloride	ug/m3			0.057	1	0.057	0.052	0.052	0.052	0.062	0.052	0.052	0.057	0.052	0.052	0.052	0.052	0.057	0.052	0.057	0.062	0.057
Bromodichloromethane	ug/m3	0.076	83	0.076		0.074	0.067	0.067	0.067	0.08	0.067	0.067	0.074	0.067	0.067	0.067	0.067	0.074	0.067	0.074	0.08	0.074
Bromoform	ug/m3	2.6	83	2.6		0.11	0.1	0.1	0.1	0.12	0.1	0.1	0.11	0.1	0.1	0.1	0.1	0.11	0.1	0.11	0.12	0.11
Bromomethane	ug/m3				5.2	0.08	0.084	0.082	0.075	0.084	0.081	0.085	0.08	0.092	0.083	0.089	0.081	0.083	0.085	0.084	0.11	0.08
Carbon Tetrachloride	ug/m3	0.47	42	0.47	100	0.46	0.45	0.47	0.47	0.46	0.47	0.46	0.47	0.47	0.46	0.47	0.46	0.46	0.46	0.46	0.47	0.45
Chlorobenzene	ug/m3				52	0.051	0.046	0.046	0.046	0.055	0.046	0.046	0.051	0.046	0.046	0.046	0.046	0.051	0.046	0.051	0.055	0.051
Chloroethane	ug/m3				4200	0.029	0.049	0.026	0.026	0.032	0.045	0.088	0.058	0.042	0.026	0.089	0.1	0.029	0.026	0.032	0.035	0.069
Chloroform	ug/m3			0.12	2	0.14	0.16	0.17	0.16	0.16	0.15	0.14	0.14	0.18	0.15	0.14	0.14	0.17	0.13	0.14	0.14	0.13
Chloromethane	ug/m3				94	0.99	0.99	1	1	1	1	0.99	1	1	0.98	1	1	1	1	1	1.1	1
Dibromochloromethane	ug/m3	0.13	83			0.094	0.085	0.085	0.085	0.1	0.085	0.085	0.094	0.085	0.085	0.085	0.085	0.094	0.085	0.094	0.1	0.094
Ethylbenzene	ug/m3			1.1	1000	0.27	0.33	0.25	0.26	0.26	0.28	0.26	0.26	0.27	0.45	0.27	0.29	0.31	0.26	0.3	0.3	0.31
Freon 113	ug/m3				5200	0.46	0.44	0.47	0.47	0.46	0.46	0.46	0.47	0.47	0.46	0.47	0.46	0.46	0.46	0.46	0.47	0.45
Freon 114	ug/m3					0.11	0.12	0.12	0.12	0.11	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.11	0.11	0.11	0.12	0.11
Freon 12	ug/m3				100	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.4	2.3
Hexachlorobutadiene	ug/m3	0.13	4.2	0.13		0.12	0.11	0.11	0.11	0.13	0.11	0.11	0.12	0.11	0.11	0.11	0.11	0.12	0.11	0.12	0.13	0.12
Methylene Chloride	ug/m3 ug/m3	I.	420	100 0.083	630	0.55	0.6 0.077	0.59 0.052	1.2 0.052	0.76 0.074	0.62 0.052	0.67	0.74 0.058	2.8 0.078	0.85	0.57 0.086	0.57 0.059	0.6	0.59	0.53 0.072	0.56 0.073	0.5 0.058
Naphthalene Styrene	ug/m3		940		3.1 1000	0.059	0.077	0.052 0.076	0.052 0.11	0.074	0.052 0.11	0.059 0.12	0.058	0.078	0.14 0.13	0.086	0.059	0.12 0.32	0.057 0.086	0.072	0.073	0.058
Styrene Tetrachloroethene	ug/m3 ug/m3	0.46	42	11	42	0.075	0.12	0.078	0.068	0.13	0.068	0.12	0.099	0.12	0.13	0.13	0.14	0.32	0.068	0.13	0.13	0.18
Toluene	ug/m3	0.40	310		5200	1.4	1.5	1.2	1.4	5.8	1.6	1.5	0.075 1.5	1.6	1.3	1.6	1.9	2	1.3	1.7	1.7	1.8
Trichloroethene	ug/m3			0.48	2.1	0.059	0.054	0.054	0.054	0.064	0.054	0.054	0.059	0.054	0.054	0.054	0.054	0.059	0.054	0.059	0.064	0.059
Trichlorofluoromethane	ug/m3		1300		Z.1 	1.1	1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Vinyl Chloride	,	0.0095	100	0.17	53	0.028	0.026	0.026	0.026	0.031	0.026	0.026	0.028	0.026	0.026	0.026	0.026	0.028	0.026	0.028	0.031	0.028
Vinyl bromide	ug/m3	0.0033		0.17	3.1	0.048	0.020	0.020	0.020	0.051	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.048	0.052	0.020
Xylene (total)	ug/m3				100	1.1	1.3	0.044	1.1	1	1	0.044	0.040	1.1	1.5	1.1	1.2	1.3	1.1	1.2	1.2	1.3
cis-1,2-Dichloroethene	ug/m3		8.3		42	0.044	0.04	0.04	0.04	0.048	0.04	0.04	0.044	0.04	0.04	0.04	0.04	0.044	0.04	0.044	0.048	0.044
cis-1,3-Dichloropropene	ug/m3					0.05	0.045	0.045	0.045	0.054	0.045	0.045	0.05	0.045	0.045	0.045	0.045	0.05	0.045	0.05	0.054	0.05
m,p-Xylenes	ug/m3				100	0.79	0.9	0.043	0.76	0.73	0.74	0.71	0.7	0.79	1.2	0.78	0.83	0.94	0.75	0.89	0.88	0.95
o-Xylene	ug/m3				100	0.32	0.35	0.28	0.3	0.29	0.29	0.28	0.28	0.31	0.37	0.31	0.33	0.37	0.70	0.35	0.35	0.37
trans-1,2-Dichloroethene	ug/m3		83		42	0.044	0.04	0.04	0.04	0.048	0.04	0.04	0.044	0.04	0.04	0.04	0.04	0.044	0.04	0.044	0.048	0.044
· ·	ug/m3					0.05	0.045	0.045	0.045	0.054	0.045	0.045	0.05	0.045	0.045	0.045	0.045	0.05	0.045	0.05	0.054	0.05
BOLD IS DETECTED	~ _					0.00	3.010	3.010	3.0 10	J.007	3.010	3.010	3.00	3.010	3.0 10	3.0 10	3.010	0.00	0.0 10	0.00	3.007	3.55
DOLD IO DETECTED				1	l .									l .	1			1	1		<u> </u>	

<u>Laboratory Data Review Checklist</u> <u>for Air and Soil Vapor Samples</u>

Site Name:
Walnut Bluff
Date:
2/14/2025
Consultant Firm:
Catalyst Environmental Solutions
Completed By (Name):
Yola Bayram
Laboratory Name:
Enthalpy Analytical Laboratory
Laboratory Report Number:
522442
Laboratory Report Date:
12/23/24

Page 1 140

Laboratory Report Number:		Report Number:	Provide an explanation in comment box
5	522442		for any N/A or No box checked.
Labo	oratory R	Report Date:	
	12/23/2	24	
1. !	Laborato	ory	
		d an ELAP or NELAP-certi alyses?	fied laboratory receive and <u>perform</u> all of the submitted sample
		Yes■ No□ N/A□	Comments:
		·	rred to another "network" laboratory or sub-contracted to an ne laboratory performing the analyses ELAP or NELAP-certified?
		Yes□ No□ N/A■	Comments:
2.	Chain of	Custody (CoC)	
	a. Co	C information completed	d, signed, and dated (including released/received by)?
		Yes■ No□ N/A□	Comments:
	b. Co	rrect analyses requested	per approved Work Plan?
		Yes■ No□ N/A□	Comments:
3. !	Laborato	ory Sample Receipt Docu	<u>mentation</u>
	ca	•	ted? (e.g., Samples collected in gas tight, opaque/dark Summa ate container? Canister vacuum/pressure checked, recorded upon pen valves?)
		Yes■ No□ N/A□	Comments:
	b. If s	sample condition compro	mised, is Data quality or usability affected?

Page 2 141

Laboi	rator	y Report Number:	Provide an explanation in comment box for any N/A or No box checked.
5	224	42	Tot any N/A of No box checked.
Laboi	rator	y Report Date:	
1	2/23	3/24	
4	. <u>C</u> a	se Narrative	
	a.	Present and understandab	le?
		Yes■ No□ N/A□	Comments:
	b.	Discrepancies, errors, and	Lab QC failures identified by the lab?
		Yes Ē No□ N/A□	If Yes, describe errors. Comments:
	c.	Does Lab describe correction	ve actions implemented?
		Yes■ No□ N/A□	If Yes, describe corrective actions. Comments:
	d.	Described impact to data of	quality/usability according to the case narrative.
	No	o issues encountered	
E C	amn	les Results	
э. <u>э</u>			d/reported as requested an COC2
	d.	Yes No□ N/A□	d/reported as requested on COC? Comments:
		Yese Nou N/AL	comments:
	b.	All applicable holding time	s met?
		Yes ■ No□ N/A□	Comments:
	c.	Are the reported reporting the project, as defined in t	g limits (RLs) less than the data quality objectives or screening level for he approved work plan?
		Yes□ No□ N/A□	Comments:
	No	one of the analytes a	re related to petroleum hydrocarbons

Laboratory Report Number:	Provide an explanation in comment box					
522442	for any N/A or No box checked.					
Laboratory Report Date:						
12/23/24						
d. Did Lab dilute the samples	;?					
Yes No□ N/A□	Comments:					
Describe impress to date or						
e. Describe impact to data qu	Jailty or usability.:					
по пправт						
6. <u>Lab QC Samples</u>						
a. Lab Method Blank						
i. One method blank re	ported per matrix, analysis and 20 samples?					
Yes No□ N/A□	Comments:					
ii. All method blank resu	ults less than RL, Lab QA/QC criteria, and project specified objectives?					
Yes■ No□ N/A□	Comments:					
iii. Describe impact to da	ata quality from Method Blank results.					
None						
b. Laboratory Control Sample	e/Duplicate (LCS/LCSD)					
i. Organics – One LCS/Lo	CSD reported per matrix, analysis, and 20 samples?					
Yes No□ N/A□	Comments:					
ii. Accuracy – All percen project specified obje	t recoveries (%R) reported and within method or laboratory limits and ctives, if applicable?					
Yes No□ N/A□	Comments:					

Page 4 143

oratory Report Number:	Provide an explanation in comment box						
522442	for any N/A or No box checked.						
oratory Report Date:							
12/23/24							
	percent differences (RPD) reported and less than method or roject specified objectives, if applicable?						
Yes■ No□ N/A□	Comments:						
iv. If %R or RPD is outside	acceptable limits, what samples are affected?:						
v. Do the affected sample Yes□ No□ N/A■	e(s) have data flags? If so, are the data flags clearly defined? Comments:						
vii. Describe impact to data	quality or usability from LCS/LCSD results?:						
c. Lab Surrogates – VOCs only							
i. Are surrogate recoveri Yes No□ N/A□	es reported for VOC analyses – field, QC and laboratory samples? Comments:						
ii. Accuracy – All percent project specified objec	recoveries (%R) reported and within method or laboratory limits and tives, if applicable?						
Yes■ No□ N/A□	Comments:						
iii. Describe impacts to da	ata quality or usability from VOC surrogate data?						

Laboratory Report Number:		Provide an explanation in comment box					
į	522442	for any N/A or No box checked.					
Labo	oratory Report Date:						
,	12/23/24						
7.	Field QC Samples						
	a. Field Duplicate						
	i. Field duplicate submi	tted per matrix, analysis, and approved Work Plan?					
	Yes□ No□ N/A■	Comments:					
	No field duplicate						
	ii. Submitted blind to lal	o?					
	Yes□ No□ N/A■	Comments:					
	(Recommended: 30%	e percent differences (RPD) less than specified project objectives? air and soil vapor) Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$					
		Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration					
	Yes□ No□ N/A■	Comments:					
	TCSL NOL NYAL	comments.					
	iv. Describe impact to da	ita quality or usability from Field Duplicate data.:					
	b. Field Blank (If not applicab	ole, a comment stating why must be entered below)?					
	Yes□ No□ N/A■	Comments:					
	i. Describe impact to d	ata quality or usability from Field Blank results?:					
	no field blank submitted	per work plan					

Page 6

Laboratory Report Number:	Provide an explanation in comment box					
522442	for any N/A or No box checked.					
Laboratory Report Date:						
12/23/24						
8. <u>Data Flags/Qualifiers</u>						
a. Are the flags clearly define	d and appropriate?					
Yes ■ No□ N/A□	Comments:					
b. Do the affected sample(s) h Yes No□ N/A□	nave appropriate data flags? Comments:					

<u>Laboratory Data Review Checklist</u> <u>for Air and Soil Vapor Samples</u>

Site Name:
Walnut Bluff
Date:
12-11-2024
Consultant Firm:
Catalyst Environmental Solutions
Completed By (Name):
Yola Bayram
Laboratory Name:
Enthalpy Analytical Laboratory
Laboratory Report Number:
2416404
Laboratory Report Date:
11/11/2024

Page 1 147

Laboratory Report Number: 2416404			Number:	Provide an explanation in comment box				
				for any N/A or No box checked.				
Lak	orato	ry Report I	Date:					
	11/1	1/2024						
1.	Labo	ratory						
	a.	Did an EL		ified laboratory receive and <u>perform</u> all of the submitted sample				
		Yes■	No□ N/A□	Comments:				
	b.		•	erred to another "network" laboratory or sub-contracted to an the laboratory performing the analyses ELAP or NELAP-certified?				
		Yes□	No□ N/A■	Comments:				
2.	<u>Chair</u>	of Custoc	ly (CoC)					
	a.	CoC infor	mation complete	d, signed, and dated (including released/received by)?				
		Yes■	No□ N/A□	Comments:				
	b.	Correct a	nalyses requeste	d per approved Work Plan?				
		Yes■	No□ N/A□	Comments:				
3.	<u>Labo</u> ı	ratory Sam	nple Receipt Doc	<u>umentation</u>				
	a.	canisters		nted? (e.g., Samples collected in gas tight, opaque/dark Summa iate container? Canister vacuum/pressure checked, recorded upon open valves?)				
		Yes■	No□ N/A□	Comments:				
	b.	If sample	condition compr	omised, is Data quality or usability affected?				
	WI	B07-1H	was received	fully evacuated and could not be analyzed.				

Page 2 148

aboratory Report Number:		y Report Number:	Provide an explanation in comment box					
24	16	404	for any N/A or No box checked.					
.abora	aboratory Report Date:							
11	/11	1/2024						
4.	Ca	se Narrative						
	a.	Present and understandab	le?					
		Yes■ No□ N/A□	Comments:					
	b.	_	Lab QC failures identified by the lab?					
		Yes■ No□ N/A□	If Yes, describe errors. Comments:					
	c. Does Lab describe correct		ve actions implemented?					
		Yes■ No□ N/A□	If Yes, describe corrective actions. Comments:					
	d.	Described impact to data o	quality/usability according to the case narrative.					
WB07-1H was received fully ev		B07-1H was received	fully evacuated and could not be analyzed					
. <u>Sa</u>	mp	les Results						
	a.	Correct analyses performe	d/reported as requested on COC?					
		Yes■ No□ N/A□	Comments:					
	b.	All applicable holding time	s met?					
		Yes■ No□ N/A□	Comments:					
	C.	Are the reported reporting the project, as defined in t	g limits (RLs) less than the data quality objectives or screening level for he approved work plan?					
		Yes□ No□ N/A□	Comments:					
	See	e attached.benzene and naphtale	ene had detections and are not affected. all others are non-petroleum hydrocarbons					

Laboratory Report Number:	Provide an explanation in comment box for any N/A or No box checked.				
2416404	Tor any N/A or No box checked.				
Laboratory Report Date:					
11/11/2024					
d. Did Lab dilute the samples	5?				
Yes No□ N/A□	Comments:				
e. Describe impact to data qu	uality or usahility :				
no impact	dancy of daabiiity				
·					
6. Lab QC Samples					
a. Lab Method Blank					
i. One method blank re	ported per matrix, analysis and 20 samples?				
Yes■ No□ N/A□	Comments:				
ii. All method blank resu	ults less than RL, Lab QA/QC criteria, and project specified objectives?				
Yes■ No□ N/A□	Comments:				
iii. Describe impact to da	ata quality from Method Blank results.				
None					
b. Laboratory Control Sample	e/Duplicate (LCS/LCSD)				
i. Organics – One LCS/L	CSD reported per matrix, analysis, and 20 samples?				
Yes■ No□ N/A□	Comments:				
ii. Accuracy – All percen project specified obje	t recoveries (%R) reported and within method or laboratory limits and ectives, if applicable?				
Yes■ No□ N/A□	Comments:				

Page 4 150

boratory Report Number:	Provide an explanation in comment box				
2416404	for any N/A or No box checked.				
boratory Report Date:					
11/11/2024					
	percent differences (RPD) reported and less than method or roject specified objectives, if applicable?				
Yes■ No□ N/A□	Comments:				
iv. If %R or RPD is outside	acceptable limits, what samples are affected?:				
v. Do the affected sample Yes□ No□ N/A■	e(s) have data flags? If so, are the data flags clearly defined? Comments:				
vii. Describe impact to data	quality or usability from LCS/LCSD results?:				
c. Lab Surrogates – VOCs only i. Are surrogate recoverie Yes No□ N/A□	es reported for VOC analyses – field, QC and laboratory samples? Comments:				
ii. Accuracy – All percent project specified object Yes No□ N/A□	recoveries (%R) reported and within method or laboratory limits and tives, if applicable? Comments:				
iii. Describe impacts to da	ata quality or usability from VOC surrogate data?				

Page 5 151

Laboratory Report Number:		Provide an explanation in comment box
24	16404	for any N/A or No box checked.
Labora	atory Report Date:	
11	/11/2024	
7. <u>Fie</u>	eld QC Samples	
	a. Field Duplicate	
	i. Field duplicate submit	ted per matrix, analysis, and approved Work Plan?
	Yes□ No□ N/A■	Comments:
	No field duplicate	
	ii. Submitted blind to lab	?
	Yes□ No□ N/A■	Comments:
	(Recommended: 30%	apercent differences (RPD) less than specified project objectives? air and soil vapor)
	Yes□ No□ N/A■	Comments:
	iv. Describe impact to da	ta quality or usability from Field Duplicate data.:
	b. Field Blank (If not applicab Yes□ No□ N/A■	le, a comment stating why must be entered below)? Comments:
	i. Describe impact to da	ata quality or usability from Field Blank results?:
	no field blank submitted	per work plan

Laboratory Report Number:	Provide an explanation in comment box for any N/A or No box checked.				
2416404					
Laboratory Report Date:					
11/11/2024					
8. <u>Data Flags/Qualifiers</u>					
a. Are the flags clearly define	d and appropriate?				
Yes■ No□ N/A□	Comments:				
b. Do the affected sample(s) has \blacksquare No \square N/A \square	nave appropriate data flags? Comments:				

ANALYTE	dtscC dtscNC RSLc	RSLnc UNITS W	B01 WB02	WB03 V	NB04	WB05	WB06	WB07 \	NB08	NB09	WB10	WB11	WB12	WB13 \	WB14 \	WB17 \	N B18
1,1,1-Trichloroethane	1000	5200 ug/m3	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1,1,2-Trichloro-1,2,2-trifluoroethane		5200 ug/m3	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1,1,2-Trichloroethane	0.18	0.21 ug/m3	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1,1-Dichloroethane	1.8 830 1.8	ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
1,1-Dichloroethene	73	4.1 ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
1,1-Difluoroethane		ug/m3	5 5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
1,2-Dibromoethane	0.83 0.0047	9.4 ug/m3	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1,2-Dichlorobenzene		210 ug/m3	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1,2-Dichloroethane	0.11	7.3 ug/m3	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1,3-Dichlorobenzene		ug/m3	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1,4-Dichlorobenzene	0.26	830 ug/m3	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Benzene	0.097 3.1 0.36	31 ug/m3	0.5 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzyl chloride	0.057	1 ug/m3	0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Carbon tetrachloride	0.47 42 0.47	100 ug/m3	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Chlorobenzene		52 ug/m3	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Chloroform	0.12	2 ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
cis-1,2-Dichloroethene	8.3	42 ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Dichlorodifluoromethane		100 ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Ethylbenzene	1.1	1000 ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Naphthalene	0.083	3.1 ug/m3	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
o-Xylene		100 ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
p- & m-Xylenes		100 ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Tetrachloroethene	0.46 42 11	42 ug/m3	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Toluene	310	5200 ug/m3	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total Xylenes		100 ug/m3	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
trans-1,2-Dichloroethene	83	42 ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
trans-1,3-Dichloropropene		ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Trichloroethene	0.48	2.1 ug/m3	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Trichlorofluoromethane	1300	ug/m3	0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Vinyl chloride	0.0095 100 0.17	53 ug/m3	0.02 0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02

<u>Laboratory Data Review Checklist</u> <u>for Air and Soil Vapor Samples</u>

Site Name:	
Walnut Bluff	
Date:	
12-11-2024	
Consultant Firm:	
Catalyst Environmental Solut	ions
Completed By (Name):	
Yola Bayram	
Laboratory Name:	
Enthalpy Analytical Laborato	ry
Laboratory Report Number:	
2416470	
Laboratory Report Date:	
11/11/2024	

Page 1 155

Laboratory Report Number:		Provide an explanation in comment box				
4	2416470	for any N/A or No box checked.				
Lab	oratory Report Date:					
	11/11/2024					
1.	<u>Laboratory</u>					
	a. Did an ELAP or NELAP-certi analyses?	fied laboratory receive and <u>perform</u> all of the submitted sample				
	Yes■ No□ N/A□	Comments:				
	-	rred to another "network" laboratory or sub-contracted to an he laboratory performing the analyses ELAP or NELAP-certified?				
	Yes□ No□ N/A■	Comments:				
2.	Chain of Custody (CoC)					
	a. CoC information completed	d, signed, and dated (including released/received by)?				
	Yes■ No□ N/A□	Comments:				
	b. Correct analyses requested	per approved Work Plan?				
	Yes No□ N/A□	Comments:				
3.	Laboratory Sample Receipt Docu	<u>mentation</u>				
	•	ated? (e.g., Samples collected in gas tight, opaque/dark Summa ate container? Canister vacuum/pressure checked, recorded upon pen valves?)				
	Yes■ No□ N/A□	Comments:				
	b. If sample condition compro	omised, is Data quality or usability affected?				

Page 2 156

Labor	ator	y Report Number:	Provide an explanation in comment box					
24	116	470	for any N/A or No box checked.					
Labor	ator	y Report Date:						
11	1/11	1/2024						
4.	Ca	se Narrative						
		Present and understandab	ble?					
		Yes No□ N/A□	Comments:					
	b.	Discrepancies, errors, and	Lab QC failures identified by the lab?					
		Yes■ No□ N/A□	If Yes, describe errors. Comments:					
	C.	Does Lab describe correcti	If Yes, describe corrective actions. Comments:					
		Yes■ No□ N/A□						
	d.	Described impact to data	quality/usability according to the case narrative.					
	No	issues noted						
5. <u>Sa</u>	amp	les Results						
	a.	Correct analyses performe	ed/reported as requested on COC?					
		Yes■ No□ N/A□	Comments:					
	L							
	b.	All applicable holding time						
		Yes■ No□ N/A□	Comments:					
	c.	Are the reported reporting the project, as defined in t	g limits (RLs) less than the data quality objectives or screening level for the approved work plan?					
		Yes□ No□ N/A□	Comments:					
	See	e attached.benzene and naphtal	ene had detections and are not affected. all others are non-petroleum hydrocarbons					

Laboratory Report Number:	Provide an explanation in comment box for any N/A or No box checked.				
2416470					
Laboratory Report Date:					
11/11/2024					
d. Did Lab dilute the samples	?				
Yes No□ N/A□	Comments:				
Describe imprest to date or					
e. Describe impact to data qu	Jailty or usability.:				
6. Lab QC Samples					
a. Lab Method Blank					
i. One method blank rep	ported per matrix, analysis and 20 samples?				
Yes No□ N/A□	Comments:				
ii. All method blank resu	Ilts less than RL, Lab QA/QC criteria, and project specified objectives?				
Yes No□ N/A□	Comments:				
iii. Describe impact to da	ta quality from Method Blank results.				
None					
b. Laboratory Control Sample	e/Duplicate (LCS/LCSD)				
i. Organics – One LCS/LC	CSD reported per matrix, analysis, and 20 samples?				
Yes No□ N/A□	Comments:				
ii. Accuracy – All percent project specified obje	t recoveries (%R) reported and within method or laboratory limits and ctives, if applicable?				
Yes No□ N/A□	Comments:				

Page 4 158

aboratory Report Number:	Provide an explanation in comment box					
2416470	for any N/A or No box checked.					
aboratory Report Date:						
11/11/2024						
•	percent differences (RPD) reported and less than method or roject specified objectives, if applicable? Comments:					
TESE NOL NAC	Comments.					
iv. If %R or RPD is outside	acceptable limits, what samples are affected?:					
v. Do the affected sample	e(s) have data flags? If so, are the data flags clearly defined?					
Yes□ No□ N/A■	Comments:					
vii. Describe impact to data	quality or usability from LCS/LCSD results?:					
c. Lab Surrogates – VOCs only						
i. Are surrogate recoverie	es reported for VOC analyses – field, QC and laboratory samples?					
Yes■ No□ N/A□	Comments:					
ii. Accuracy – All percent rproject specified object	recoveries (%R) reported and within method or laboratory limits and tives, if applicable?					
Yes■ No□ N/A□	Comments:					
iii. Describe impacts to da	ata quality or usability from VOC surrogate data?					

Page 5 159

Labora	atory Report Number:	Provide an explanation in comment box					
24	116470	for any N/A or No box checked.					
Labora	atory Report Date:						
11	/11/2024						
7. <u>Fi</u>	eld QC Samples						
	a. Field Duplicate						
	i. Field duplicate submit	ted per matrix, analysis, and approved Work Plan?					
	Yes□ No□ N/A■	Comments:					
	No field duplicate						
	ii. Submitted blind to lab	?					
	Yes□ No□ N/A■	Comments:					
	(Recommended: 30%	apercent differences (RPD) less than specified project objectives? air and soil vapor)					
	Yes□ No□ N/A■	Comments:					
	iv. Describe impact to da	ta quality or usability from Field Duplicate data.:					
	b. Field Blank (If not applicab Yes□ No□ N/A■	le, a comment stating why must be entered below)? Comments:					
	i. Describe impact to da	ata quality or usability from Field Blank results?:					
	no field blank submitted	per work plan					

Page 6

Laboratory Report Number:	Provide an explanation in comment box					
2416470	for any N/A or No box checked.					
Laboratory Report Date:						
11/11/2024						
8. Data Flags/Qualifiers						
a. Are the flags clearly defined	d and appropriate?					
Yes■ No□ N/A□	Comments:					
b. Do the affected sample(s) h Yes No \square N/A \square	ave appropriate data flags? Comments:					
,						

ANALYTE	dtscC dtscNC RSLc	RSLnc UNITS \	WB01 WB0	02 WB03	WB04	WB05	WB06	WB07	WB08 \	NB09	WB10	WB11	WB12	WB13	WB14 \	WB17 \	WB18
1,1,1-Trichloroethane	1000	5200 ug/m3	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1,1,2-Trichloro-1,2,2-trifluoroethane		5200 ug/m3	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1,1,2-Trichloroethane	0.18	0.21 ug/m3	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1,1-Dichloroethane	1.8 830 1.8	ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
1,1-Dichloroethene	73	4.1 ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
1,1-Difluoroethane		ug/m3	5	5 5	5	5	5	5	5	5	5	5	5	5	5	5	5
1,2-Dibromoethane	0.83 0.0047	9.4 ug/m3	0.2	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1,2-Dichlorobenzene		210 ug/m3	0.2	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1,2-Dichloroethane	0.11	7.3 ug/m3	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1,3-Dichlorobenzene		ug/m3	0.2	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1,4-Dichlorobenzene	0.26	830 ug/m3	0.2	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Benzene	0.097 3.1 0.36	31 ug/m3	0.5 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzyl chloride	0.057	1 ug/m3	0.5	0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Carbon tetrachloride	0.47 42 0.47	100 ug/m3	0.2	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Chlorobenzene		52 ug/m3	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Chloroform	0.12	2 ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
cis-1,2-Dichloroethene	8.3	42 ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Dichlorodifluoromethane		100 ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Ethylbenzene	1.1	1000 ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Naphthalene	0.083	3.1 ug/m3	0.2	0.2 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
o-Xylene		100 ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
p- & m-Xylenes		100 ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Tetrachloroethene	0.46 42 11	42 ug/m3	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Toluene	310	5200 ug/m3	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total Xylenes		100 ug/m3	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
trans-1,2-Dichloroethene	83	42 ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
trans-1,3-Dichloropropene		ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Trichloroethene	0.48	2.1 ug/m3	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Trichlorofluoromethane	1300	ug/m3	0.05 0.	.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Vinyl chloride	0.0095 100 0.17	53 ug/m3	0.02 0.	.02 0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02

Appendix C

Dixon's Outlier Test for Benzene

ProUCL Dixon's Outlier Test Bezene Proposed Walnut Bluff Development

Outlier Tests for Selected Uncensored Variables

User Selected Options

Date/Time of Computation ProUCL 5.2 12/8/2024 7:01:51 AM

From File WorkSheet.xls

Full Precision OFF

Dixon's Outlier Test for C0

Number of Observations = 14 10% critical value: 0.492 5% critical value: 0.546 1% critical value: 0.641

1. Observation Value 3.2 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.939

For 10% significance level, 3.2 is an outlier. For 5% significance level, 3.2 is an outlier. For 1% significance level, 3.2 is an outlier.

ProUCL Dixon's Outlier Test Toluene Proposed Walnut Bluff Development

Outlier Tests for Selected Uncensored Variables

User Selected Options

Date/Time of Computation ProUCL 5.2 12/8/2024 7:01:51 AM

From File WorkSheet.xls

Full Precision OFF

Dixon's Outlier Test for C0

Number of Observations = 14 10% critical value: 0.492 5% critical value: 0.546 1% critical value: 0.641

1. Observation Value 5.8 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.867

For 10% significance level, 5.8 is an outlier. For 5% significance level, 5.8 is an outlier. For 1% significance level, 5.8 is an outlier.

Appendix D

Assessment Of Potential Human Health Risks ProUCL Outputs

Appendix D ProUCL Output for 95% UCLs Proposed Walnut Bluff Development

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.2 10/23/2024 12:00:19 PM

From File 14D-ProUCLinput.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operatior 2000

1,2,4-Trimethylbenzene

General Statistic	2

Total Number of Observations	14 Number of Distinct Observations	9
	Number of Missing Observations	0
Minimum	0.24 Mean	0.31
Maximum	0.5 Median	0.29
SD	0.0643 Std. Error of Mean	0.0172
Coefficient of Variation	0.208 Skewness	2.194

Normal GOF Test

Shapiro Wilk Test Statistic 0.771 Shapiro Wilk GOF Test

1% Shapiro Wilk Critical Value 0.825 Data Not Normal at 1% Significance Level

Lilliefors Test Statistic 0.276 Lilliefors GOF Test

1% Lilliefors Critical Value 0.263 Data Not Normal at 1% Significance Level

Data Not Normal at 1% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.34	95% Adjusted-CLT UCL (Chen-1995)	0.349
		95% Modified-t UCL (Johnson-1978)	0.342

Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamma Distributed at 5% Significance Level	 0.923 Anderson-Darling Gamma GOF Test 0.734 Data Not Gamma Distributed at 5% Significance Level 0.262 Kolmogorov-Smirnov Gamma GOF Test 0.228 Data Not Gamma Distributed at 5% Significance Level 	
Gamma Statistics		
k hat (MLE)	30.29 k star (bias corrected MLE)	23.84
Theta hat (MLE)	0.0102 Theta star (bias corrected MLE)	0.013
nu hat (MLE)	848 nu star (bias corrected)	667.6
MLE Mean (bias corrected)	0.31 MLE Sd (bias corrected)	0.0635
	Approximate Chi Square Value (0.05)	608.7
Adjusted Level of Significance	0.0312 Adjusted Chi Square Value	601.2
Assuming Gamma Distribution 95% Approximate Gamma UCL Lognormal GOF Test Shapiro Wilk Test Statistic	0.34 95% Adjusted Gamma UCL 0.855 Shapiro Wilk Lognormal GOF Test	0.344
10% Shapiro Wilk Critical Value	0.895 Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.25 Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.208 Data Not Lognormal at 10% Significance Level	
Data Not Lognormal at 10% Significance Level	oleoo zata ttot engine mar av toto olgi mosmoo en ol	
Lognormal Statistics		
Minimum of Logged Data	-1.427 Mean of logged Data	-1.188
Maximum of Logged Data	-0.693 SD of logged Data	0.181
Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	0.339 90% Chebyshev (MVUE) UCL 0.375 97.5% Chebyshev (MVUE) UCL 0.459	0.355 0.404
Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution		

Nonparametric Distribution Free UCLs			
95% CLT UCL	0.338	95% BCA Bootstrap UCL	0.349
95% Standard Bootstrap UCL	0.338	95% Bootstrap-t UCL	0.365
95% Hall's Bootstrap UCL	0.472	95% Percentile Bootstrap UCL	0.34
90% Chebyshev(Mean, Sd) UCL	0.362	95% Chebyshev(Mean, Sd) UCL	0.385
97.5% Chebyshev(Mean, Sd) UCL	0.417	99% Chebyshev(Mean, Sd) UCL	0.481
Suggested UCL to Use			
95% Student's-t UCL	0.34		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

1,2-Dichloroethane

General Statistics		
Total Number of Observations 14	Number of Distinct Observations	6
	Number of Missing Observations	0
Minimum 0.061	Mean 0.06	32
Maximum 0.072	Median 0.0)62
SD 0.00291	Std. Error of Mean 7.79E-	-04
Coefficient of Variation 0.0461	Skewness 2.4	109

Normal GOF Test	
Shapiro Wilk Test Statistic	0.701 Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.825 Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.315 Lilliefors GOF Test
1% Lilliefors Critical Value	0.263 Data Not Normal at 1% Significance Level
Data Not Normal at 1% Significance Level	

S			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.0646	95% Adjusted-CLT UCL (Chen-1995)	0.065

	95% Modified-t UCL (Johnson-1978)	0.0647
Gamma GOF Test		
A-D Test Statistic	1.49 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733 Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.311 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.228 Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significa	ance Level	
Gamma Statistics		
k hat (MLE)	537.9 k star (bias corrected MLE)	422.7
Theta hat (MLE)	1.18E-04 Theta star (bias corrected MLE)	1.50E-04
nu hat (MLE)	15060 nu star (bias corrected)	11834
MLE Mean (bias corrected)	0.0632 MLE Sd (bias corrected)	0.00307
	Approximate Chi Square Value (0.05)	11582
Adjusted Level of Significance	0.0312 Adjusted Chi Square Value	11549
Assuming Gamma Distribution		
95% Approximate Gamma UCL	0.0646 95% Adjusted Gamma UCL	0.0648
Lognormal GOF Test		
Shapiro Wilk Test Statistic	0.719 Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.895 Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.308 Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value Data Not Lognormal at 10% Significance Le	0.208 Data Not Lognormal at 10% Significance Level evel	
Lognormal Statistics		
Minimum of Logged Data	-2.797 Mean of logged Data	-2.762
Maximum of Logged Data	-2.631 SD of logged Data	0.0441
Maximum of Edggod Bala	2.001 OB of logged Bala	0.0111
Assuming Lognormal Distribution		
95% H-UCL	N/A 90% Chebyshev (MVUE) UCL	0.0654
95% Chebyshev (MVUE) UCL	0.0665 97.5% Chebyshev (MVUE) UCL	0.0679
99% Chebyshev (MVUE) UCL	0.0706	

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL 0.06	645 95% BCA Bootstrap UCL	0.0649
95% Standard Bootstrap UCL 0.06	95% Bootstrap-t UCL	0.0662
95% Hall's Bootstrap UCL 0.06	998 95% Percentile Bootstrap UCL	0.0646
90% Chebyshev(Mean, Sd) UCL 0.06	556 95% Chebyshev(Mean, Sd) UCL	0.0666
97.5% Chebyshev(Mean, Sd) UCL 0.06	881 99% Chebyshev(Mean, Sd) UCL	0.071

Suggested UCL to Use

95% Student's-t UCL 0.0646

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

1,3,5-Trimethylbenzene

General Statistics

Total Number of Observations	14 Number of Distinct Observations	10
	Number of Missing Observations	0
Minimum	0.055 Mean	0.0761
Maximum	0.14 Median	0.0705
SD	0.0214 Std. Error of Mean	0.00572
Coefficient of Variation	0.281 Skewness	2.35

Normal GOF Test

Shapiro Wilk Test Statistic 0.729 Shapiro Wilk GOF Test

1% Shapiro Wilk Critical Value 0.825 Data Not Normal at 1% Significance Level

Lilliefors Test Statistic 0.326 Lilliefors GOF Test

1% Lilliefors Critical Value 0.263 Data Not Normal at 1% Significance Level

Data Not Normal at 1% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% Student's-t UCL	0.0863	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	0.0894 0.0869
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamma Distributed at 5% Significance Level	0.734 0.302 0.228	Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	
Gamma Statistics			
k hat (MLE)	17.71	k star (bias corrected MLE)	13.97
Theta hat (MLE)	0.0043	Theta star (bias corrected MLE)	0.00545
nu hat (MLE)	496	nu star (bias corrected)	391.1
MLE Mean (bias corrected)	0.0761	MLE Sd (bias corrected)	0.0204
		Approximate Chi Square Value (0.05)	346.2
Adjusted Level of Significance	0.0312	Adjusted Chi Square Value	340.6
Accumulate Common Distribution			
Assuming Gamma Distribution 95% Approximate Gamma UCL	0.086	059/ Adjusted Commo LICI	0.0874
95% Approximate Gamma OCL	0.066	95% Adjusted Gamma UCL	0.0674
Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.834	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value		Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value		Data Not Lognormal at 10% Significance Level	
Data Not Lognormal at 10% Significance Level		•	
Lognormal Statistics			
Minimum of Logged Data		Mean of logged Data	-2.604
Maximum of Logged Data	-1.966	SD of logged Data	0.234
Assuming Lognormal Distribution			
95% H-UCL	0.0857	90% Chebyshev (MVUE) UCL	0.0902
95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	0.106
		, <u>,</u>	21100

99% Chebyshev (MVUE) UCL

0.123

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0855	95% BCA Bootstrap UCL	0.0896
95% Standard Bootstrap UCL	0.0853	95% Bootstrap-t UCL	0.0993
95% Hall's Bootstrap UCL	0.132	95% Percentile Bootstrap UCL	0.0861
90% Chebyshev(Mean, Sd) UCL	0.0933	95% Chebyshev(Mean, Sd) UCL	0.101
97.5% Chebyshev(Mean, Sd) UCL	0.112	99% Chebyshev(Mean, Sd) UCL	0.133

Suggested UCL to Use

95% Student's-t UCL 0.0863

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzene

General Statistics

Total Number of Observations	13 Number of Distinct Observations	9
	Number of Missing Observations	0
Minimum	0.72 Mean	0.799
Maximum	0.99 Median	0.78
SD	0.0775 Std. Error of Mean	0.0215
Coefficient of Variation	0.097 Skewness	1.315

Normal GOF Test

Shapiro Wilk Test Statistic 0.88 Shapiro Wilk GOF Test

1% Shapiro Wilk Critical Value 0.814 Data appear Normal at 1% Significance Level

Lilliefors Test Statistic 0.162 Lilliefors GOF Test

1% Lilliefors Critical Value 0.271 Data appear Normal at 1% Significance Level

Data appear Normal at 1% Significance Level

Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.838 95% Adjusted-CLT UCL (Chen-1995)	0.843
	95% Modified-t UCL (Johnson-1978)	0.839
Gamma GOF Test		
A-D Test Statistic	0.477 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.732 Detected data appear Gamma Distributed at 5% Significand	ce Level
K-S Test Statistic	0.176 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.236 Detected data appear Gamma Distributed at 5% Significand	ce Level
Detected data appear Gamma Distributed at	5% Significance Level	
Gamma Statistics		
k hat (MLE)	122.4 k star (bias corrected MLE)	94.22
Theta hat (MLE)	0.00653 Theta star (bias corrected MLE)	0.00848
nu hat (MLE)	3183 nu star (bias corrected)	2450
MLE Mean (bias corrected)	0.799 MLE Sd (bias corrected)	0.0823
	Approximate Chi Square Value (0.05)	2336
Adjusted Level of Significance	0.0301 Adjusted Chi Square Value	2320
Assuming Gamma Distribution		
95% Approximate Gamma UCL	0.838 95% Adjusted Gamma UCL	0.844
Lognormal GOF Test		
Shapiro Wilk Test Statistic	0.903 Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.889 Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.169 Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.215 Data appear Lognormal at 10% Significance Level	
Data appear Lognormal at 10% Significance	Level	
Lognormal Statistics		

-0.329 Mean of logged Data -0.0101 SD of logged Data

Assuming Lognormal Distribution

Minimum of Logged Data

Maximum of Logged Data

-0.228

0.0928

95% H-UCL	N/A	90% Chebyshev (MVUE) UCL	0.861
95% Chebyshev (MVUE) UCL	0.889	97.5% Chebyshev (MVUE) UCL	0.928
99% Chebyshev (MVUE) UCL	1.004		
Nonparametric Distribution Free UCL Statistics			
Data appear to follow a Discernible Distribution			
Nonparametric Distribution Free UCLs			
95% CLT UCL	0.835	95% BCA Bootstrap UCL	0.843
95% Standard Bootstrap UCL	0.833	95% Bootstrap-t UCL	0.852
95% Hall's Bootstrap UCL	0.863	95% Percentile Bootstrap UCL	0.835
90% Chebyshev(Mean, Sd) UCL	0.864	95% Chebyshev(Mean, Sd) UCL	0.893
97.5% Chebyshev(Mean, Sd) UCL	0.933	99% Chebyshev(Mean, Sd) UCL	1.013
Suggested UCL to Use			
95% Student's-t UCL	0.838		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Bromomethane

14 Number of Distinct Observations	9
Number of Missing Observations	0
0.075 Mean	0.0831
0.092 Median	0.083
0.00409 Std. Error of Mean	0.00109
0.0492 Skewness	0.375
	Number of Missing Observations 0.075 Mean 0.092 Median 0.00409 Std. Error of Mean

Normal GOF Test	
Shapiro Wilk Test Statistic	0.95 Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.825 Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.182 Lilliefors GOF Test

1% Lilliefors Critical Value Data appear Normal at 1% Significance Level	0.263	Data appear Normal at 1% Significance Level	
Assuming Normal Distribution 95% Normal UCL 95% Student's-t UCL	0.0851	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	0.0851 0.0851
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear Gamma Distributed at 5% Signature	0.733 0.171 0.228	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan evel	
Gamma Statistics k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance Assuming Gamma Distribution	1.86E-04 12534 0.0831	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	351.8 2.36E-04 9850 0.00443 9620 9590
95% Approximate Gamma UCL Lognormal GOF Test Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Data appear Lognormal at 10% Significance Level	0.895 0.175	95% Adjusted Gamma UCL Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	0.0854
Lognormal Statistics Minimum of Logged Data Maximum of Logged Data		Mean of logged Data SD of logged Data	-2.488 0.049

Assuming	Lognormal	Distribution

95% H-UCL	N/A 90% Chebyshev (MVUE) UCL	0.0864
95% Chebyshev (MVUE) UCL	0.0879 97.5% Chebyshev (MVUE) UCL	0.0899
99% Chehyshey (MVLIF) LICI	0.094	

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0849	95% BCA Bootstrap UCL	0.085
95% Standard Bootstrap UCL	0.0849	95% Bootstrap-t UCL	0.0853
95% Hall's Bootstrap UCL	0.0857	95% Percentile Bootstrap UCL	0.0849
90% Chebyshev(Mean, Sd) UCL	0.0864	95% Chebyshev(Mean, Sd) UCL	0.0879
97.5% Chebyshev(Mean, Sd) UCL	0.09	99% Chebyshev(Mean, Sd) UCL	0.094

Suggested UCL to Use

95% Student's-t UCL 0.0851

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Carbon Tetrachloride

General Statistics

Total Number of Observations	14 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	0.45 Mean	0.464
Maximum	0.47 Median	0.46
SD	0.00633 Std. Error of Mean	0.00169
Coefficient of Variation	0.0137 Skewness	-0.433

Normal GOF Test

Shapiro Wilk Test Statistic 0.771 Shapiro Wilk GOF Test

0.825 Data Not Normal at 1% Significance Level0.285 Lilliefors GOF Test0.263 Data Not Normal at 1% Significance Level	
95% UCLs (Adjusted for Skewness) 0.467 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	0.466 0.467
1.727 Anderson-Darling Gamma GOF Test 0.733 Data Not Gamma Distributed at 5% Significance Level 0.319 Kolmogorov-Smirnov Gamma GOF Test 0.228 Data Not Gamma Distributed at 5% Significance Level	
5749 k star (bias corrected MLE) 8.06E-05 Theta star (bias corrected MLE) 160985 nu star (bias corrected) 0.464 MLE Sd (bias corrected) Approximate Chi Square Value (0.05) 0.0312 Adjusted Chi Square Value	4517 1.03E-04 126489 0.0069 125663 125554
 0.467 95% Adjusted Gamma UCL 0.771 Shapiro Wilk Lognormal GOF Test 0.895 Data Not Lognormal at 10% Significance Level 0.283 Lilliefors Lognormal GOF Test 0.208 Data Not Lognormal at 10% Significance Level 	0.467
	0.285 Lilliefors GOF Test 0.263 Data Not Normal at 1% Significance Level 95% UCLs (Adjusted for Skewness) 0.467 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 1.727 Anderson-Darling Gamma GOF Test 0.733 Data Not Gamma Distributed at 5% Significance Level 0.319 Kolmogorov-Smirnov Gamma GOF Test 0.228 Data Not Gamma Distributed at 5% Significance Level ace Level 5749 k star (bias corrected MLE) 8.06E-05 Theta star (bias corrected MLE) 160985 nu star (bias corrected) 0.464 MLE Sd (bias corrected) Approximate Chi Square Value (0.05) 0.0312 Adjusted Chi Square Value 0.467 95% Adjusted Gamma UCL 0.771 Shapiro Wilk Lognormal GOF Test 0.895 Data Not Lognormal at 10% Significance Level 0.283 Lilliefors Lognormal GOF Test

Lognormal Statistics

Minimum of Logged Data	-0.799	Mean of logged Data		-0.769
Maximum of Logged Data	-0.755	SD of logged Data		0.0137
Assuming Lognormal Distribution				
95% H-UCL	N/A	90% Chebyshev (MVUE) UCL		0.469
95% Chebyshev (MVUE) UCL	0.471	97.5% Chebyshev (MVUE) UCL		0.474
99% Chebyshev (MVUE) UCL	0.48			
Nonparametric Distribution Free UCL Statistics				
Data do not follow a Discernible Distribution				
Nonparametric Distribution Free UCLs				
95% CLT UCL	0.466	95% BCA Bootstrap UCL	N/A	
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A	
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A	
90% Chebyshev(Mean, Sd) UCL	0.469	95% Chebyshev(Mean, Sd) UCL		0.471
97.5% Chebyshev(Mean, Sd) UCL	0.474	99% Chebyshev(Mean, Sd) UCL		0.48
Suggested UCL to Use				
95% Student's-t UCL	0.467			

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Chloroethane

General Statistics		
Total Number of Observations	14 Number of Distinct Observations	10
Number of Detects	7 Number of Non-Detects	7
Number of Distinct Detects	7 Number of Distinct Non-Detects	3
Minimum Detect	0.042 Minimum Non-Detect	0.026
Maximum Detect	0.1 Maximum Non-Detect	0.032

Variance Detects	5.88E-04 Percent Non-Detects	50%
Mean Detects	0.0673 SD Detects	0.0242
Median Detects	0.058 CV Detects	0.36
Skewness Detects	0.327 Kurtosis Detects	-2.259
Mean of Logged Detects	-2.755 SD of Logged Detects	0.363

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.856 Shapiro Wilk GOF Test

1% Shapiro Wilk Critical Value 0.73 Detected Data appear Normal at 1% Significance Level

Lilliefors Test Statistic 0.232 Lilliefors GOF Test

1% Lilliefors Critical Value 0.35 Detected Data appear Normal at 1% Significance Level

Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0466 KM Standard Error of Mean	0.00752
90KM SD	0.026 95% KM (BCA) UCL	0.0585
95% KM (t) UCL	0.06 95% KM (Percentile Bootstrap) UCL	0.0579
95% KM (z) UCL	0.059 95% KM Bootstrap t UCL	0.0606
90% KM Chebyshev UCL	0.0692 95% KM Chebyshev UCL	0.0794
97.5% KM Chebyshev UCL	0.0936 99% KM Chebyshev UCL	0.121

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 0.543 Anderson-Darling GOF Test

5% A-D Critical Value 0.709 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.258 Kolmogorov-Smirnov GOF

5% K-S Critical Value 0.312 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Note GOF tests may be unreliable for small sample sizes

Gamma Statistics on Detected Data Only

k hat (MLE)	9.027 k star (bias corrected MLE)	5.253
Theta hat (MLE)	0.00745 Theta star (bias corrected MLE)	0.0128
nu hat (MLE)	126.4 nu star (bias corrected)	73.55
	0.0070	

Mean (detects) 0.0673

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum	0.01 Mean	0.0406
Maximum	0.1 Median	0.0332
SD	0.0325 CV	0.801
k hat (MLE)	1.603 k star (bias corrected MLE)	1.307
Theta hat (MLE)	0.0253 Theta star (bias corrected MLE)	0.031
nu hat (MLE)	44.88 nu star (bias corrected)	36.59
Adjusted Level of Significance (β)	0.0312	
Approximate Chi Square Value (36.59, α)	23.75 Adjusted Chi Square Value (36.59, β)	22.38
95% Gamma Approximate UCL	0.0625 95% Gamma Adjusted UCL	0.0663

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0466 SD (KM)	0.026
Variance (KM)	6.78E-04 SE of Mean (KM)	0.00752
k hat (KM)	3.208 k star (KM)	2.568
nu hat (KM)	89.83 nu star (KM)	71.92
theta hat (KM)	0.0145 theta star (KM)	0.0182
80% gamma percentile (KM)	0.0678 90% gamma percentile (KM)	0.0856
95% gamma percentile (KM)	0.102 99% gamma percentile (KM)	0.139

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (71.92, α)	53.39 Adjusted Chi Square Value (71.92, β)	51.28
95% KM Approximate Gamma UCL	0.0628 95% KM Adjusted Gamma UCL	0.0654

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.869 Shapiro Wilk GOF Test
-----------------------------	-----------------------------

10% Shapiro Wilk Critical Value	0.838 Detected Data appear Lognormal at 10% Significance Level

Lilliefors Test Statistic 0.243 Lilliefors GOF Test

10% Lilliefors Critical Value 0.28 Detected Data appear Lognormal at 10% Significance Level

Detected Data appear Lognormal at 10% Significance Level Note GOF tests may be unreliable for small sample sizes Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0452 Mean in Log Scale	-3.275
SD in Original Scale	0.0285 SD in Log Scale	0.617
95% t UCL (assumes normality of ROS data)	0.0587 95% Percentile Bootstrap UCL	0.0573
95% BCA Bootstrap UCL	0.0583 95% Bootstrap t UCL	0.0631
95% H-UCL (Log ROS)	0.067	

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.202 KM Geo Mean	0.0407
KM SD (logged)	0.507 95% Critical H Value (KM-Log)	2.016
KM Standard Error of Mean (logged)	0.146 95% H-UCL (KM -Log)	0.0614
KM SD (logged)	0.507 95% Critical H Value (KM-Log)	2.016
KM Standard Error of Mean (logged)	0.146	

DL/2 Statistics

DL/2 NormalDL/2 Log-TransformedMean in Original Scale0.0406 Mean in Log Scale-3.519SD in Original Scale0.0323 SD in Log Scale0.832

0.0558 95% H-Stat UCL

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

95% t UCL (Assumes normality)

Detected Data appear Normal Distributed at 1% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.06

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chloroform

General Statistics

0.075

Total Number of Observations	14 Number of Distinct Observations	6
Minimum	Number of Missing Observations 0.13 Mean	0 0.152
Minimum Maximum	0.13 Median	0.152
SD	0.16 Median 0.0148 Std. Error of Mean	0.00395
Coefficient of Variation	0.0971 Skewness	0.00393
Coefficient of Variation	0.097 Skewiless	0.400
Normal GOF Test		
Shapiro Wilk Test Statistic	0.922 Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825 Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.223 Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263 Data appear Normal at 1% Significance Level	
Data appear Normal at 1% Significance Level	oleoo zata appear tronnar at the olgonical control	
_ a.a. appear 1.ca. a. 1.70 o.gcaco _c.c.		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.159 95% Adjusted-CLT UCL (Chen-1995)	0.159
	95% Modified-t UCL (Johnson-1978)	0.159
Gamma GOF Test		
A-D Test Statistic	0.58 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733 Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.232 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.228 Data Not Gamma Distributed at 5% Significance Level	
Detected data follow Appr. Gamma Distribution at	t 5% Significance Level	
Gamma Statistics		
k hat (MLE)	116.1 k star (bias corrected MLE)	91.26
Theta hat (MLE)	0.00131 Theta star (bias corrected MLE)	0.00167
nu hat (MLE)	3250 nu star (bias corrected)	2555
MLE Mean (bias corrected)	0.152 MLE Sd (bias corrected)	0.0159
	Approximate Chi Square Value (0.05)	2439
Adjusted Level of Significance	0.0312 Adjusted Chi Square Value	2424
Assumain a Communa District diser		
Assuming Gamma Distribution	0.450 OS9/ Adjusted Corpore - USI	0.40
95% Approximate Gamma UCL	0.159 95% Adjusted Gamma UCL	0.16

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.926 Shapiro Wilk Lognormal GOF Test

10% Shapiro Wilk Critical Value 0.895 Data appear Lognormal at 10% Significance Level

Lilliefors Test Statistic 0.223 Lilliefors Lognormal GOF Test

10% Lilliefors Critical Value 0.208 Data Not Lognormal at 10% Significance Level

Data appear Approximate Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.04 Mean of logged Data	-1.887
Maximum of Logged Data	-1.715 SD of logged Data	0.0961

Assuming Lognormal Distribution

95% H-UCL	N/A 90% Chebyshev (MVUE) UCL	0.164
95% Chebyshev (MVUE) UCL	0.169 97.5% Chebyshev (MVUE) UCL	0.177
99% Chebyshev (MVUE) UCL	0.191	

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	0.159	95% BCA Bootstrap UCL	0.158
95% Standard Bootstrap UCL	0.158	95% Bootstrap-t UCL	0.159
95% Hall's Bootstrap UCL	0.159	95% Percentile Bootstrap UCL	0.159
90% Chebyshev(Mean, Sd) UCL	0.164	95% Chebyshev(Mean, Sd) UCL	0.169
97.5% Chebyshev(Mean, Sd) UCL	0.177	99% Chebyshev(Mean, Sd) UCL	0.191

Suggested UCL to Use

95% Student's-t UCL 0.159

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chloromethane

General Statistics		
Total Number of Observations	14 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	0.98 Mean	0.996
Maximum	1 Median	1
SD	0.00633 Std. Error of Mean	0.00169
Coefficient of Variation	0.00636 Skewness	-1.687
Normal GOF Test		
Shapiro Wilk Test Statistic	0.627 Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825 Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.428 Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263 Data Not Normal at 1% Significance Level	
Data Not Normal at 1% Significance Level	ŭ	
Assuming Normal Distribution	070/1101 /4 11 / 15 01	
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.999 95% Adjusted-CLT UCL (Chen-1995)	0.998
	95% Modified-t UCL (Johnson-1978)	0.999
Gamma GOF Test		
A-D Test Statistic	2.73 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733 Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.435 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.228 Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significan	ce Level	
Gamma Statistics		
k hat (MLE)	26494 k star (bias corrected MLE)	20816
Theta hat (MLE)	3.76E-05 Theta star (bias corrected MLE)	4.79E-05
nu hat (MLE)	741822 nu star (bias corrected)	582861
MLE Mean (bias corrected)	0.996 MLE Sd (bias corrected)	0.00691
	Approximate Chi Square Value (0.05)	581087
Adjusted Level of Significance	0.0312 Adjusted Chi Square Value	580851

Assuming Gamma Distribution 95% Approximate Gamma UCL	0.999	95% Adjusted Gamma UCL		1
Lognormal GOF Test Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Data Not Lognormal at 10% Significance Level	0.895 0.428	Shapiro Wilk Lognormal GOF Test Data Not Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test Data Not Lognormal at 10% Significance Level		
Lognormal Statistics				
Minimum of Logged Data		Mean of logged Data		-0.0036
Maximum of Logged Data	0	SD of logged Data		0.00639
Assuming Lognormal Distribution				
95% H-UCL	N/A	90% Chebyshev (MVUE) UCL		1.002
95% Chebyshev (MVUE) UCL	1.004	97.5% Chebyshev (MVUE) UCL		1.007
99% Chebyshev (MVUE) UCL	1.013			
Nonparametric Distribution Free UCL Statistics				
Data do not follow a Discernible Distribution				
Nonparametric Distribution Free UCLs				
95% CLT UCL	0.999	95% BCA Bootstrap UCL	N/A	
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A	
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A	
90% Chebyshev(Mean, Sd) UCL	1.002	, ,		1.004
97.5% Chebyshev(Mean, Sd) UCL	1.007	99% Chebyshev(Mean, Sd) UCL		1.013
Suggested UCL to Use				
95% Student's-t UCL	0.999			

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Ethylbenzene

General Statistics		
Total Number of Observations	14 Number of Distinct Observations	8
	Number of Missing Observations	0
Minimum	0.25 Mean	0.287
Maximum	0.45 Median	0.27
SD	0.0518 Std. Error of Mean	0.0138
Coefficient of Variation	0.18 Skewness	2.739
Normal GOF Test		
Shapiro Wilk Test Statistic	0.638 Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825 Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.273 Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263 Data Not Normal at 1% Significance Level	
Data Not Normal at 1% Significance Level		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.312 95% Adjusted-CLT UCL (Chen-1995)	0.321
	95% Modified-t UCL (Johnson-1978)	0.313
Gamma GOF Test		
A-D Test Statistic	1.694 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733 Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.276 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.228 Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Leve	el	
Gamma Statistics		
k hat (MLE)	41.34 k star (bias corrected MLE)	32.53
Theta hat (MLE)	0.00695 Theta star (bias corrected MLE)	0.00883

nu hat (MLE) MLE Mean (bias corrected)	1158 nu star (bias corrected) 0.287 MLE Sd (bias corrected)	910.9 0.0503
Adjusted Level of Significance	Approximate Chi Square Value (0.05) 0.0312 Adjusted Chi Square Value	841.8 833
Assuming Gamma Distribution		
95% Approximate Gamma UCL	0.311 95% Adjusted Gamma UCL	0.314
Lognormal GOF Test		
Shapiro Wilk Test Statistic	0.7 Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.895 Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.269 Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.208 Data Not Lognormal at 10% Significance Level	
Data Not Lognormal at 10% Significance Level		
Lognormal Statistics		
Minimum of Logged Data	-1.386 Mean of logged Data	-1.26
Maximum of Logged Data	-0.799 SD of logged Data	0.153
Assuming Lognormal Distribution		
95% H-UCL	0.31 90% Chebyshev (MVUE) UCL	0.322
95% Chebyshev (MVUE) UCL	0.338 97.5% Chebyshev (MVUE) UCL	0.36
99% Chebyshev (MVUE) UCL	0.404	
Nonparametric Distribution Free UCL Statistics		
Data do not follow a Discernible Distribution		
Nonparametric Distribution Free UCLs		
95% CLT UCL	0.31 95% BCA Bootstrap UCL	0.321
95% Standard Bootstrap UCL	0.309 95% Bootstrap-t UCL	0.35
95% Hall's Bootstrap UCL	0.396 95% Percentile Bootstrap UCL	0.311
90% Chebyshev(Mean, Sd) UCL	0.329 95% Chebyshev(Mean, Sd) UCL	0.347
97.5% Chebyshev(Mean, Sd) UCL	0.374 99% Chebyshev(Mean, Sd) UCL	0.425
Suggested UCL to Use		
95% Student's-t UCL	0.312	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Freon 113

Gamma Statistics

General Statistics		
Total Number of Observations	14 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	0.44 Mean	0.462
Maximum	0.47 Median	0.46
SD	0.00802 Std. Error of Mean	0.00214
Coefficient of Variation	0.0173 Skewness	-1.482
Normal GOF Test		
Shapiro Wilk Test Statistic	0.723 Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825 Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.323 Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263 Data Not Normal at 1% Significance Level	
Data Not Normal at 1% Significance Level		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.466 95% Adjusted-CLT UCL (Chen-1995)	0.465
	95% Modified-t UCL (Johnson-1978)	0.466
Gamma GOF Test		
A-D Test Statistic	1.592 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733 Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.297 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.228 Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level		

k hat (MLE)	3524 k star (bias corrected MLE	2769
Theta hat (MLE)	1.31E-04 Theta star (bias corrected	MLE) 1.67E-04
nu hat (MLE)	98661 nu star (bias corrected)	77521
MLE Mean (bias corrected)	0.462 MLE Sd (bias corrected)	0.00878
	Approximate Chi Square V	/alue (0.05) 76874
Adjusted Level of Significance	0.0312 Adjusted Chi Square Value	e 76789
Assuming Gamma Distribution		
95% Approximate Gamma UCL	0.466 95% Adjusted Gamma L	JCL 0.467
10057		
Lognormal GOF Test	0.740.01 : \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NO. T
Shapiro Wilk Test Statistic	0.718 Shapiro Wilk Lognormal G	
10% Shapiro Wilk Critical Value	0.895 Data Not Lognormal at 10°	G
Lilliefors Test Statistic	0.327 Lilliefors Lognormal GOF	
10% Lilliefors Critical Value	0.208 Data Not Lognormal at 109	% Significance Level
Data Not Lognormal at 10% Significance Level		
Lognormal Statistics		
Minimum of Logged Data	-0.821 Mean of logged Data	-0.772
Maximum of Logged Data	-0.755 SD of logged Data	0.0176
Assuming Lognormal Distribution		
95% H-UCL	N/A 90% Chebyshev (MVUE	0.469
95% Chebyshev (MVUE) UCL	0.472 97.5% Chebyshev (MVUE	·
99% Chebyshev (MVUE) UCL	0.484	
Nonparametric Distribution Free UCL Statistics		
Data do not follow a Discernible Distribution		
Nonparametric Distribution Free UCLs		
95% CLT UCL	0.466 95% BCA Bootstrap UCI	L N/A
95% Standard Bootstrap UCL	N/A 95% Bootstrap-t UCL	N/A N/A
95% Hall's Bootstrap UCL	N/A 95% Percentile Bootstrap	
90% Chebyshev(Mean, Sd) UCL	0.469 95% Chebyshev(Mean, S	•
97.5% Chebyshev(Mean, Sd) UCL	0.476 99% Chebyshev(Mean, S	
31.370 Chebyshev(Ivicall, Su) UCL	0.470 99 /0 Chebyshev(Mean, 3	5u) UCL U.403

Suggested UCL to Use 95% Student's-t UCL

0.466

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Freon 114

General Statistics		
Total Number of Observations	14 Number of Distinct Observations	2
	Number of Missing Observations	0
Minimum	0.11 Mean	0.117
Maximum	0.12 Median	0.12
SD	0.00469 Std. Error of Mean	0.00125
Coefficient of Variation	0.04 Skewness	-1.067
Normal GOF Test		
Shapiro Wilk Test Statistic	0.576 Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825 Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.443 Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263 Data Not Normal at 1% Significance Level	
Data Not Normal at 1% Significance Level		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.119 95% Adjusted-CLT UCL (Chen-1995)	0.119
	95% Modified-t UCL (Johnson-1978)	0.119
Gamma GOF Test		
A-D Test Statistic	3.136 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733 Data Not Gamma Distributed at 5% Significance Level	

K-S Test Statistic	0.451 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.228 Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamma Distributed at 5% Significance Le	evel	
Gamma Statistics		
k hat (MLE)	655.6 k star (bias corrected MLE)	515.2
Theta hat (MLE)	1.79E-04 Theta star (bias corrected MLE)	2.27E-04
nu hat (MLE)	18357 nu star (bias corrected)	14425
MLE Mean (bias corrected)	0.117 MLE Sd (bias corrected)	0.00516
	Approximate Chi Square Value (0.05)	14147
Adjusted Level of Significance	0.0312 Adjusted Chi Square Value	14110
Assuming Gamma Distribution		
95% Approximate Gamma UCL	0.119 95% Adjusted Gamma UCL	0.12
Lognormal GOF Test		
Shapiro Wilk Test Statistic	0.576 Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.895 Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.443 Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.208 Data Not Lognormal at 10% Significance Level	
Data Not Lognormal at 10% Significance Level		
Lognormal Statistics		
Minimum of Logged Data	-2.207 Mean of logged Data	-2.145
Maximum of Logged Data	-2.12 SD of logged Data	0.0408
Assuming Lognormal Distribution		
95% H-UCL	N/A 90% Chebyshev (MVUE) UCL	0.121
95% Chebyshev (MVUE) UCL	0.123 97.5% Chebyshev (MVUE) UCL	0.125
99% Chebyshev (MVUE) UCL	0.13	
Nonparametric Distribution Free UCL Statistics		
Data do not follow a Discernible Distribution		
Nonparametric Distribution Free UCLs		
95% CLT UCL	0.119 95% BCA Bootstrap UCL	N/A

95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
90% Chebyshev(Mean, Sd) UCL	0.121	95% Chebyshev(Mean, Sd) UCL	0.123
97.5% Chebyshev(Mean, Sd) UCL	0.125	99% Chebyshev(Mean, Sd) UCL	0.13

Suggested UCL to Use

95% Student's-t UCL 0.119

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Freon 12

General Statistics

Total Number of Observations

14 Number of Distinct Observations

1 Number of Missing Observations

0 Minimum

2.3 Mean

2.3 Median

2.3 Median

Warning: There is only one distinct observation value in this data set - resulting in '0' variance!

ProUCL (or any other software) should not be used on such a data set!

The data set for variable Freon 12 was not processed!

If possible, compute and collect Data Quality Objectives (DQOs) based sample size and analytical results.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

m,p-Xylenes

General Statistics

Total Number of Observations	14 Number of Distinct Observations Number of Missing Observations	12 0
Minimum	0.7 Mean	0.809
Maximum	1.2 Median	0.77
SD	0.133 Std. Error of Mean	0.0354
Coefficient of Variation	0.164 Skewness	2.237
Normal GOF Test		
Shapiro Wilk Test Statistic	0.747 Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825 Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.272 Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263 Data Not Normal at 1% Significance Level	
Data Not Normal at 1% Significance Level		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.872 95% Adjusted-CLT UCL (Chen-1995)	0.89
	95% Modified-t UCL (Johnson-1978)	0.876
Gamma GOF Test		
A-D Test Statistic	1.041 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733 Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.261 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.228 Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level	I	
Gamma Statistics		
k hat (MLE)	47.37 k star (bias corrected MLE)	37.27
Theta hat (MLE)	0.0171 Theta star (bias corrected MLE)	0.0217
nu hat (MLE)	1326 nu star (bias corrected)	1043
MLE Mean (bias corrected)	0.809 MLE Sd (bias corrected)	0.133
	Approximate Chi Square Value (0.05)	969.5
Adjusted Level of Significance	0.0312 Adjusted Chi Square Value	960
Assuming Gamma Distribution		
95% Approximate Gamma UCL	0.871 95% Adjusted Gamma UCL	0.88

Lognormal GOF Test		
Shapiro Wilk Test Statistic	0.806 Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.895 Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.251 Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.208 Data Not Lognormal at 10% Significance Level	
Data Not Lognormal at 10% Significance Level		
Lognormal Statistics		
Minimum of Logged Data	-0.357 Mean of logged Data	-0.222
Maximum of Logged Data	0.182 SD of logged Data	0.145
Assuming Lognormal Distribution		
95% H-UCL	0.869 90% Chebyshev (MVUE) UCL	0.903
95% Chebyshev (MVUE) UCL	0.946 97.5% Chebyshev (MVUE) UCL	1.005
99% Chebyshev (MVUE) UCL	1.122	
Nonparametric Distribution Free UCL Statistics		
Data do not follow a Discernible Distribution		
Nonparametric Distribution Free UCLs		
95% CLT UCL	0.868 95% BCA Bootstrap UCL	0.89
95% Standard Bootstrap UCL	0.866 95% Bootstrap-t UCL	0.926
95% Hall's Bootstrap UCL	1.111 95% Percentile Bootstrap UCL	0.871
90% Chebyshev(Mean, Sd) UCL	0.916 95% Chebyshev(Mean, Sd) UCL	0.964
97.5% Chebyshev(Mean, Sd) UCL	1.031 99% Chebyshev(Mean, Sd) UCL	1.162
Suggested UCL to Use		
95% Student's-t UCL	0.872	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Methylene Chloride

General Statistics		
Total Number of Observations	14 Number of Distinct Observations	11
	Number of Missing Observations	0
Minimum	0.55 Mean	0.836
Maximum	2.8 Median	0.61
SD	0.591 Std. Error of Mean	0.158
Coefficient of Variation	0.706 Skewness	3.26
Normal GOF Test		
Shapiro Wilk Test Statistic	0.506 Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825 Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.348 Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263 Data Not Normal at 1% Significance Level	
Data Not Normal at 1% Significance Level		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1.116 95% Adjusted-CLT UCL (Chen-1995)	1.243
	95% Modified-t UCL (Johnson-1978)	1.139
Gamma GOF Test		
A-D Test Statistic	2.169 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.74 Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.298 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.23 Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level		
Gamma Statistics		
k hat (MLE)	4.27 k star (bias corrected MLE)	3.403
Theta hat (MLE)	0.196 Theta star (bias corrected MLE)	0.246
nu hat (MLE)	119.6 nu star (bias corrected)	95.27
MLE Mean (bias corrected)	0.836 MLE Sd (bias corrected)	0.453
	Approximate Chi Square Value (0.05)	73.76
Adjusted Level of Significance	0.0312 Adjusted Chi Square Value	71.25

Assuming Gamma Distribution 95% Approximate Gamma UCL	1.08 95% Adjusted Gamma UCL	1.118
Lognormal GOF Test		
Shapiro Wilk Test Statistic	0.663 Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.895 Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.262 Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.208 Data Not Lognormal at 10% Significance Level	
Data Not Lognormal at 10% Significance Level		
Lognormal Statistics		
Minimum of Logged Data	-0.598 Mean of logged Data	-0.3
Maximum of Logged Data	1.03 SD of logged Data	0.437
Assuming Lognormal Distribution		
95% H-UCL	1.038 90% Chebyshev (MVUE) UCL	1.098
95% Chebyshev (MVUE) UCL	1.229 97.5% Chebyshev (MVUE) UCL	1.411
99% Chebyshev (MVUE) UCL	1.769	
Nonparametric Distribution Free UCL Statistics		
Data do not follow a Discernible Distribution		
Nonparametric Distribution Free UCLs		
95% CLT UCL	1.096 95% BCA Bootstrap UCL	1.283
95% Standard Bootstrap UCL	1.082 95% Bootstrap-t UCL	2.143
95% Hall's Bootstrap UCL	2.094 95% Percentile Bootstrap UCL	1.116
90% Chebyshev(Mean, Sd) UCL	1.31 95% Chebyshev(Mean, Sd) UCL	1.524
97.5% Chebyshev(Mean, Sd) UCL	1.822 99% Chebyshev(Mean, Sd) UCL	2.407
Suggested UCL to Use		
95% Student's-t UCL	1.116	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Naphthalene

General Statistics			
Total Number of Observations	14	Number of Distinct Observations	10
Number of Detects	10	Number of Non-Detects	4
Number of Distinct Detects	8	Number of Distinct Non-Detects	2
Minimum Detect	0.057	Minimum Non-Detect	0.052
Maximum Detect	0.14	Maximum Non-Detect	0.058
Variance Detects	7.92E-04	Percent Non-Detects	28.57%
Mean Detects	0.0809	SD Detects	0.0281
Median Detects	0.0755	CV Detects	0.348
Skewness Detects	1.375	Kurtosis Detects	1.072
Mean of Logged Detects	-2.561	SD of Logged Detects	0.311
Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic	0.809	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value		Detected Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
1% Lilliefors Critical Value	0.304	Detected Data appear Normal at 1% Significance Level	
Detected Data appear Normal at 1% Significan	ce Level		
Kaplan-Meier (KM) Statistics using Normal Criti	ical Values and	other Nonparametric UCLs	
KM Mean		KM Standard Error of Mean	0.00733
90KM SD	0.026	95% KM (BCA) UCL	0.0863
95% KM (t) UCL	0.0857	95% KM (Percentile Bootstrap) UCL	0.0849
95% KM (z) UCL	0.0848	95% KM Bootstrap t UCL	0.0965
90% KM Chebyshev UCL	0.0947	95% KM Chebyshev UCL	0.105
97.5% KM Chebyshev UCL	0.119	99% KM Chebyshev UCL	0.146
Gamma GOF Tests on Detected Observations	Only		
A-D Test Statistic	•	Anderson-Darling GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic		Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.267	Detected data appear Gamma Distributed at 5% Significance Level	

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	10.84 k star (bias corrected MLE) 0.00746 Theta star (bias corrected MLE) 216.8 nu star (bias corrected) 0.0809	7.653 0.0106 153.1
Gamma ROS Statistics using Imputed Non-Detects		
GROS may not be used when data set has > 50% i	•	
•	nall such as <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS method may yield incom		
This is especially true when the sample size is sma		
_	CLs may be computed using gamma distribution on KM estimates 0.0128 Mean	0.0649
Minimum Maximum	0.14 Median	0.0649
SD	0.0355 CV	0.039
k hat (MLE)	3.138 k star (bias corrected MLE)	2.513
Theta hat (MLE)	0.0207 Theta star (bias corrected MLE)	0.0258
nu hat (MLE)	87.86 nu star (bias corrected)	70.36
Adjusted Level of Significance (β)	0.0312	
Approximate Chi Square Value (70.36, α)	52.05 Adjusted Chi Square Value (70.36, β)	49.97
95% Gamma Approximate UCL	0.0877 95% Gamma Adjusted UCL	0.0913
Estimates of Gamma Parameters using KM Estima	tes	
Mean (KM)	0.0727 SD (KM)	0.026
Variance (KM)	6.76E-04 SE of Mean (KM)	0.00733
k hat (KM)	7.821 k star (KM)	6.192
nu hat (KM)	219 nu star (KM)	173.4
theta hat (KM)	0.0093 theta star (KM)	0.0117
80% gamma percentile (KM)	0.0955 90% gamma percentile (KM)	0.112
95% gamma percentile (KM)	0.127 99% gamma percentile (KM)	0.157
Gamma Kaplan-Meier (KM) Statistics		
Approximate Chi Square Value (173.39, α)	143.9 Adjusted Chi Square Value (173.39, β)	140.4
95% KM Approximate Gamma UCL	0.0876 95% KM Adjusted Gamma UCL	0.0898

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic 0.86 Shapiro Wilk GOF Test

10% Shapiro Wilk Critical Value 0.869 Detected Data Not Lognormal at 10% Significance Level

Lilliefors Test Statistic 0.206 Lilliefors GOF Test

10% Lilliefors Critical Value 0.241 Detected Data appear Lognormal at 10% Significance Level

Detected Data appear Approximate Lognormal at 10% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0685 Mean in Log Scale	-2.77
SD in Original Scale	0.0311 SD in Log Scale	0.434
95% t UCL (assumes normality of ROS data)	0.0832 95% Percentile Bootstrap UCL	0.0823
95% BCA Bootstrap UCL	0.0836 95% Bootstrap t UCL	0.0899
95% H-UCL (Log ROS)	0.0876	

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.673	KM Geo Mean	0.0691
KM SD (logged)	0.305	95% Critical H Value (KM-Log)	1.899
KM Standard Error of Mean (logged)	0.0861	95% H-UCL (KM -Log)	0.085
KM SD (logged)	0.305	95% Critical H Value (KM-Log)	1.899
KM Standard Error of Mean (logged)	0.0861		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed	
Mean in Original Scale	0.0654 Mean in Log Scale	-2.865
SD in Original Scale	0.0345 SD in Log Scale	0.561
95% t UCL (Assumes normality)	0.0818 95% H-Stat UCL	0.0927

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 1% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0857

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

o-Xylene

General Statistics		
Total Number of Observations	14 Number of Distinct Observations	8
	Number of Missing Observations	0
Minimum	0.28 Mean	0.313
Maximum	0.37 Median	0.305
SD	0.0315 Std. Error of Mean	0.00841
Coefficient of Variation	0.101 Skewness	0.849
Normal GOF Test		
Shapiro Wilk Test Statistic	0.876 Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825 Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.179 Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263 Data appear Normal at 1% Significance Level	
Data appear Normal at 1% Significance Level		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.328 95% Adjusted-CLT UCL (Chen-1995)	0.329
	95% Modified-t UCL (Johnson-1978)	0.328
Gamma GOF Test		
A-D Test Statistic	0.588 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733 Detected data appear Gamma Distributed at 5% Significance Le	evel
K-S Test Statistic	0.169 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.228 Detected data appear Gamma Distributed at 5% Significance Le	evel
Detected data appear Gamma Distributed at 5% Signature	ignificance Level	
Gamma Statistics		
k hat (MLE)	110.8 k star (bias corrected MLE)	87.12
Theta hat (MLE)	0.00282 Theta star (bias corrected MLE)	0.00359
nu hat (MLE)	3103 nu star (bias corrected)	2439
MLE Mean (bias corrected)	0.313 MLE Sd (bias corrected)	0.0335

Adjusted Level of Significance	Approximate Chi Square Value (0.05) 0.0312 Adjusted Chi Square Value	2326 2311
Assuming Gamma Distribution 95% Approximate Gamma UCL	0.328 95% Adjusted Gamma UCL	0.33
Lognormal GOF Test Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Data appear Approximate Lognormal at 10% Sign	0.89 Shapiro Wilk Lognormal GOF Test 0.895 Data Not Lognormal at 10% Significance Level 0.162 Lilliefors Lognormal GOF Test 0.208 Data appear Lognormal at 10% Significance Level ifficance Level	
Lognormal Statistics Minimum of Logged Data Maximum of Logged Data	-1.273 Mean of logged Data -0.994 SD of logged Data	-1.167 0.0977
Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	N/A 90% Chebyshev (MVUE) UCL 0.348 97.5% Chebyshev (MVUE) UCL 0.394	0.337 0.364
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution		
Nonparametric Distribution Free UCLs 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	 0.327 95% BCA Bootstrap UCL 0.326 95% Bootstrap-t UCL 0.328 95% Percentile Bootstrap UCL 0.338 95% Chebyshev(Mean, Sd) UCL 0.365 99% Chebyshev(Mean, Sd) UCL 	0.328 0.331 0.326 0.35 0.397
Suggested UCL to Use 95% Student's-t UCL	0.328	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Styrene

0		
General Statistics	44 Noushan of Distinct Observations	0
Total Number of Observations	14 Number of Distinct Observations	9
Minimore	Number of Missing Observations	0 120
Minimum	0.076 Mean	0.128
Maximum	0.32 Median	0.12
SD	0.0581 Std. Error of Mean	0.0155
Coefficient of Variation	0.455 Skewness	3.111
Normal GOF Test		
Shapiro Wilk Test Statistic	0.599 Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825 Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.346 Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263 Data Not Normal at 1% Significance Level	
Data Not Normal at 1% Significance Level		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.155 95% Adjusted-CLT UCL (Chen-1995)	0.167
	95% Modified-t UCL (Johnson-1978)	0.158
Gamma GOF Test		
A-D Test Statistic	1.356 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.736 Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.293 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.229 Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level		
Gamma Statistics		
k hat (MLE)	8.31 k star (bias corrected MLE)	6.577
Theta hat (MLE)	0.0154 Theta star (bias corrected MLE)	0.0195

nu hat (MLE) MLE Mean (bias corrected)	232.7 nu star (bias corrected) 0.128 MLE Sd (bias corrected)	184.2 0.0499
	Approximate Chi Square Value (0.05)	153.8
Adjusted Level of Significance	0.0312 Adjusted Chi Square Value	150.1
Assuming Gamma Distribution		
95% Approximate Gamma UCL	0.153 95% Adjusted Gamma UCL	0.157
Lognormal GOF Test		
Shapiro Wilk Test Statistic	0.794 Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.895 Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.264 Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.208 Data Not Lognormal at 10% Significance Level	
Data Not Lognormal at 10% Significance Level		
Lognormal Statistics		
Minimum of Logged Data	-2.577 Mean of logged Data	-2.118
Maximum of Logged Data	-1.139 SD of logged Data	0.329
Assuming Lognormal Distribution		
95% H-UCL	0.151 90% Chebyshev (MVUE) UCL	0.16
95% Chebyshev (MVUE) UCL	0.176 97.5% Chebyshev (MVUE) UCL	0.197
99% Chebyshev (MVUE) UCL	0.239	
Nonparametric Distribution Free UCL Statistics		
Data do not follow a Discernible Distribution		
Nonparametric Distribution Free UCLs		
95% CLT UCL	0.153 95% BCA Bootstrap UCL	0.168
95% Standard Bootstrap UCL	0.153 95% Bootstrap-t UCL	0.192
95% Hall's Bootstrap UCL	0.264 95% Percentile Bootstrap UCL	0.157
90% Chebyshev(Mean, Sd) UCL	0.175 95% Chebyshev(Mean, Sd) UCL	0.196
97.5% Chebyshev(Mean, Sd) UCL	0.225 99% Chebyshev(Mean, Sd) UCL	0.283
Suggested UCL to Use		
95% Student's-t UCL	0.155	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Tetrachloroethene

General Statistics

Total Number of Observations	14 Number of Distinct Observations	4
Number of Detects	1 Number of Non-Detects	13
Number of Distinct Detects	1 Number of Distinct Non-Detects	3

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Tetrachloroethene was not processed!

Toluene

General Statistics

Total Number of Observations	13 Number of Distinct Observations	7
	Number of Missing Observations	0
Minimum	1.2 Mean	1.523
Maximum	2 Median	1.5
SD	0.228 Std. Error of Mean	0.0632
Coefficient of Variation	0.15 Skewness	0.863

Normal GOF Test

Shapiro Wilk Test Statistic	0.919 Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.814 Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.214 Lilliefors GOF Test
1% Lilliefors Critical Value	0.271 Data appear Normal at 1% Significance Level
Data appear Normal at 1% Significance Level	

Assuming Normal Distribution 95% Normal UCL 95% Student's-t UCL	1.636	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	1.643 1.638
Gamma GOF Test			
A-D Test Statistic	0.397	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733	Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.19	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.236	Detected data appear Gamma Distributed at 5% Significance Level	
Detected data appear Gamma Distributed at 5% Sigr	nificance Le	evel	
Gamma Statistics			
k hat (MLE)		k star (bias corrected MLE)	39.2
Theta hat (MLE)		Theta star (bias corrected MLE)	0.0388
nu hat (MLE)		nu star (bias corrected)	1019
MLE Mean (bias corrected)		MLE Sd (bias corrected)	0.243
		Approximate Chi Square Value (0.05)	946.2
Adjusted Level of Significance	0.0301	Adjusted Chi Square Value	936.2
Assuming Gamma Distribution			
95% Approximate Gamma UCL	1.641	95% Adjusted Gamma UCL	1.658
		•	
Lognormal GOF Test			
Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.187	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.215	Data appear Lognormal at 10% Significance Level	
Data appear Lognormal at 10% Significance Level			
Lognormal Statistics			
Minimum of Logged Data	0 182	Mean of logged Data	0.411
Maximum of Logged Data		SD of logged Data	0.411
Maximum of Loggod Data	0.000	ob of logged batta	0.170
Assuming Lognormal Distribution			
95% H-UCL	1.642	90% Chebyshev (MVUE) UCL	1.706

95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	1.79 2.132	97.5% Chebyshev (MVUE) UCL	1.905
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution			
Nonparametric Distribution Free UCLs			
95% CLT UCL	1.627	95% BCA Bootstrap UCL	1.631
95% Standard Bootstrap UCL	1.625	95% Bootstrap-t UCL	1.669
95% Hall's Bootstrap UCL	1.723	95% Percentile Bootstrap UCL	1.631
90% Chebyshev(Mean, Sd) UCL	1.713	95% Chebyshev(Mean, Sd) UCL	1.799
97.5% Chebyshev(Mean, Sd) UCL	1.918	99% Chebyshev(Mean, Sd) UCL	2.152
Suggested UCL to Use			
95% Student's-t UCL	1.636		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Trichlorofluoromethane

\sim		\sim	4: 4	•
Gene	コrつi	<u> </u>	TICT	יס אוי
(36116	71 AI	$-\infty$	เมอเ	IL O

Total Number of Observations	14 Number of Distinct Observations	2
	Number of Missing Observations	0
Minimum	1 Mean	1.093
Maximum	1.1 Median	1.1
SD	0.0267 Std. Error of Mean	0.00714
Coefficient of Variation	0.0245 Skewness	-3.742

Normal GOF Test

Shapiro Wilk Test Statistic 0.297 Shapiro Wilk GOF Test

1% Shapiro Wilk Critical Value 0.825 Data Not Normal at 1% Significance Level

Lilliefors Test Statistic 0.534 Lilliefors GOF Test

1% Lilliefors Critical Value 0.263 Data Not Normal at 1% Significance Level

Data Not Normal at 1% Significance Level

Assuming Normal Distribution 95% Normal UCL 95% Student's-t UCL	1.106	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	1.097 1.104
Gamma GOF Test A-D Test Statistic	4 972	Anderson Darling Commo COE Toot	
5% A-D Critical Value		Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Lo		Data Not Gamma Distributed at 570 dignificance Ecver	
Bata Not Gamma Bistribated at 676 digninounce E	CVCI		
Gamma Statistics			
k hat (MLE)	1706	k star (bias corrected MLE)	1340
Theta hat (MLE)	6.41E-04	Theta star (bias corrected MLE)	8.15E-04
nu hat (MLE)	47755	nu star (bias corrected)	37523
MLE Mean (bias corrected)	1.093	MLE Sd (bias corrected)	0.0299
		Approximate Chi Square Value (0.05)	37074
Adjusted Level of Significance	0.0312	Adjusted Chi Square Value	37015
Assuming Gamma Distribution			
95% Approximate Gamma UCL	1.106	95% Adjusted Gamma UCL	1.108
Lagnermal COF Test			
Lognormal GOF Test Shapiro Wilk Test Statistic	0.207	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value		Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value		Data Not Lognormal at 10% Significance Level	
Data Not Lognormal at 10% Significance Level	0.200	Buta Not Edgilotinal at 10% digililloando Edvol	
Bata 1101 Bognormal at 1070 Olgrimoanoo E0001			
Lognormal Statistics			
Minimum of Logged Data	0	Mean of logged Data	0.0885
Maximum of Logged Data	0.0953	SD of logged Data	0.0255

Assuming Lognormal Distribution
--

95% H-UCL	N/A 90% Chebyshev (MVUE) UCL	1.115
95% Chebyshev (MVUE) UCL	1.125 97.5% Chebyshev (MVUE) UCL	1.139
99% Chebyshev (MVUE) UCL	1.167	

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	1.105	95% BCA Bootstrap UCL	N/A
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
90% Chebyshev(Mean, Sd) UCL	1.114	95% Chebyshev(Mean, Sd) UCL	1.124
97.5% Chebyshev(Mean, Sd) UCL	1.137	99% Chebyshev(Mean, Sd) UCL	1.164

Suggested UCL to Use

95% Student's-t UCL 1.106

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Appendix E

Laboratory Analytical Reports – 14-day Samples

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 518235

Report Level : II

Report Date : 10/22/2024

Analytical Report *prepared for:*

Yola Bayram Catalyst Environmental Solutions 315 Montana Avenue Suite 311 Santa Monica, CA 90403

Location: Walnut Bluff Workplan

Authorized for release by:

Miguel Gamboa, Project Manager miguel.gamboa@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Yola Bayram Lab Job #: 518235

Catalyst Environmental Location: Walnut Bluff Workplan Solutions Date Received: 10/15/24

Solutions Date Received: 10/15/24 315 Montana Avenue

Suite 311

Santa Monica, CA 90403

Sample ID	Lab ID	Collected	Matrix
WB01-14D	518235-001	10/15/24 11:37	Air
WB02-14D	518235-002	10/15/24 11:34	Air
WB03-14D	518235-003	10/15/24 11:46	Air
WB04-14D	518235-004	10/15/24 11:50	Air
WB05-14D	518235-005	10/15/24 12:01	Air
WB06-14D	518235-006	10/15/24 11:56	Air
WB07-14D	518235-007	10/15/24 12:06	Air
WB08-14D	518235-008	10/15/24 12:11	Air
WB09-14D	518235-009	10/15/24 11:05	Air
WB10-14D	518235-010	10/15/24 11:12	Air
WB11-14D	518235-011	10/15/24 11:16	Air
WB12-14D	518235-012	10/15/24 11:20	Air
WB13-14D	518235-013	10/15/24 11:24	Air
WB14-14D	518235-014	10/15/24 11:28	Air
WB17-14D	518235-015	10/15/24 09:40	Air
WB18-14D	518235-016	10/15/24 10:28	Air
WB19-14D	518235-017	10/15/24 14:44	Air

Case Narrative

Catalyst Environmental Solutions Lab

315 Montana Avenue

Suite 311

Santa Monica, CA 90403

Yola Bayram

Lab Job Number: 518235

Location: Walnut Bluff Workplan

Date Received: 10/15/24

This data package contains sample and QC results for seventeen air samples, requested for the above referenced project on 10/15/24. The samples were received intact.

Volatile Organics in Air by MS (EPA TO-15 SIM):

No analytical problems were encountered.

Detection Summary

Yola Bayram Catalyst Environmental Solutions 315 Montana Avenue Suite 311 Santa Monica, CA 90403

Lab Job #: 518235 Location: Walnut Bluff Workplan Date Received: 10/15/24

Sample ID: WB01-14D Lab ID: 518235-001 Collected: 10/15/24 11:37

Matrix: Air

8235-001 Analyte	Result	Qual Units	RL
ethod: EPA TO-15 SIM ep Method: METHOD			
Freon 12	460	pptv	1
Freon 12	2.3	ug/m3	0.054
Chloromethane	480	pptv	110
Chloromethane	0.99	ug/m3	0.23
Freon 114	16	pptv	11
Freon 114	0.11	ug/m3	0.077
Bromomethane	21	pptv	11
Bromomethane	0.080	ug/m3	0.043
Trichlorofluoromethane	190	pptv	11
Trichlorofluoromethane	1.1	ug/m3	0.062
Methylene Chloride	160	pptv	22
Methylene Chloride	0.55	ug/m3	0.076
Freon 113	60	pptv	11
Freon 113	0.46	ug/m3	0.084
Chloroform	28	pptv	11
Chloroform	0.14	ug/m3	0.054
1,2-Dichloroethane	16	pptv	11
1,2-Dichloroethane	0.063	ug/m3	0.045
Benzene	250	pptv	11
Benzene	0.80	ug/m3	0.035
Carbon Tetrachloride	73	pptv	11
Carbon Tetrachloride	0.46	ug/m3	0.069
Toluene	360	pptv	11
Toluene	1.4	ug/m3	0.041
Ethylbenzene	63	pptv	11
Ethylbenzene	0.27	ug/m3	0.048
m,p-Xylenes	180	pptv	11
m,p-Xylenes	0.79	ug/m3	0.048
Styrene	24	pptv	11
Styrene	0.10	ug/m3	0.047
o-Xylene	73	pptv	11
o-Xylene	0.32	ug/m3	0.048
1,3,5-Trimethylbenzene	15	pptv	11
1,3,5-Trimethylbenzene	0.074	ug/m3	0.054
1,2,4-Trimethylbenzene	61	pptv	11
1,2,4-Trimethylbenzene	0.30	ug/m3	0.054
Naphthalene	11	pptv	11
Naphthalene	0.059	ug/m3	0.058
Xylene (total)	250	pptv	1.
Xylene (total)	1.1	ug/m3	0.048

Detection Summary

Detection Summary

Sample ID: WB02-14D Lab ID: 518235-002 Collected: 10/15/24 11:34

Matrix: Air

518235-002 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	470		pptv	10
Freon 12	2.3		ug/m3	0.049
Chloromethane	480		pptv	100
Chloromethane	0.99		ug/m3	0.21
Freon 114	16		pptv	10
Freon 114	0.12		ug/m3	0.070
Bromomethane	22		pptv	10
Bromomethane	0.084		ug/m3	0.039
Chloroethane	19		pptv	10
Chloroethane	0.049		ug/m3	0.026
Trichlorofluoromethane	180		pptv	10
Trichlorofluoromethane	1.0		ug/m3	0.056
Methylene Chloride	170		pptv	20
Methylene Chloride	0.60		ug/m3	0.069
Freon 113	58		pptv	10
Freon 113	0.44		ug/m3	0.077
Chloroform	32		pptv	10
Chloroform	0.16		ug/m3	0.049
1,2-Dichloroethane	16		pptv	10
1,2-Dichloroethane	0.066		ug/m3	0.040
Benzene	260		pptv	10
Benzene	0.83		ug/m3	0.032
Carbon Tetrachloride	71		pptv	10
Carbon Tetrachloride	0.45		ug/m3	0.063
Toluene	410		pptv	10
Toluene	1.5		ug/m3	0.038
Ethylbenzene	75		pptv	10
Ethylbenzene	0.33		ug/m3	0.043
m,p-Xylenes	210		pptv	10
m,p-Xylenes	0.90		ug/m3	0.043
Styrene	28		pptv	10
Styrene	0.12		ug/m3	0.043
o-Xylene	82		pptv	10
o-Xylene	0.35		ug/m3	0.043
1,3,5-Trimethylbenzene	20		pptv	10
1,3,5-Trimethylbenzene	0.10		ug/m3	0.049
1,2,4-Trimethylbenzene	74		pptv	10
1,2,4-Trimethylbenzene	0.37		ug/m3	0.049
Naphthalene	15		pptv	10
Naphthalene	0.077		ug/m3	0.052
Xylene (total)	290		pptv	10
Xylene (total)	1.3		ug/m3	0.043

Sample ID: WB03-14D Lab ID: 518235-003 Collected: 10/15/24 11:46

518235-003 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	470		pptv	10
Freon 12	2.3		ug/m3	0.049
Chloromethane	490		pptv	100
Chloromethane	1.0		ug/m3	0.21
Freon 114	17		pptv	10
Freon 114	0.12		ug/m3	0.070
Bromomethane	21		pptv	10
Bromomethane	0.082		ug/m3	0.039
Trichlorofluoromethane	200		pptv	10
Trichlorofluoromethane	1.1		ug/m3	0.056
Methylene Chloride	170		pptv	20
Methylene Chloride	0.59		ug/m3	0.069
Freon 113	61		pptv	10
Freon 113	0.47		ug/m3	0.077
Chloroform	34		pptv	10
Chloroform	0.17		ug/m3	0.049
1,2-Dichloroethane	15		pptv	10
1,2-Dichloroethane	0.062		ug/m3	0.040
Benzene	230		pptv	10
Benzene	0.72		ug/m3	0.032
Carbon Tetrachloride	75		pptv	10
Carbon Tetrachloride	0.47		ug/m3	0.063
Toluene	330		pptv	10
Toluene	1.2		ug/m3	0.038
Ethylbenzene	57		pptv	10
Ethylbenzene	0.25		ug/m3	0.043
m,p-Xylenes	160		pptv	10
m,p-Xylenes	0.71		ug/m3	0.043
Styrene	18		pptv	10
Styrene	0.076		ug/m3	0.043
o-Xylene	65		pptv	10
o-Xylene	0.28		ug/m3	0.043
1,3,5-Trimethylbenzene	11		pptv	10
1,3,5-Trimethylbenzene	0.055		ug/m3	0.049
1,2,4-Trimethylbenzene	48		pptv	10
1,2,4-Trimethylbenzene	0.24		ug/m3	0.049
Xylene (total)	230		pptv	10
Xylene (total)	0.99		ug/m3	0.043

Sample ID: WB04-14D Lab ID: 518235-004 Collected: 10/15/24 11:50

518235-004 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM				
Prep Method: METHOD				
Freon 12	470		pptv	10
Freon 12	2.3		ug/m3	0.049
Chloromethane	490		pptv	100
Chloromethane	1.0		ug/m3	0.21
Freon 114	16		pptv	10
Freon 114	0.12		ug/m3	0.070
Bromomethane	19		pptv	10
Bromomethane	0.075		ug/m3	0.039
Trichlorofluoromethane	200		pptv	10
Trichlorofluoromethane	1.1		ug/m3	0.056
Methylene Chloride	340		pptv	20
Methylene Chloride	1.2		ug/m3	0.069
Freon 113	61		pptv	10
Freon 113	0.47		ug/m3	0.077
Chloroform	33		pptv	10
Chloroform	0.16		ug/m3	0.049
1,2-Dichloroethane	15		pptv	10
1,2-Dichloroethane	0.062		ug/m3	0.040
Benzene	230		pptv	10
Benzene	0.74		ug/m3	0.032
Carbon Tetrachloride	75		pptv	10
Carbon Tetrachloride	0.47		ug/m3	0.063
Toluene	380		pptv	10
Toluene	1.4		ug/m3	0.038
Ethylbenzene	60		pptv	10
Ethylbenzene	0.26		ug/m3	0.043
m,p-Xylenes	180		pptv	10
m,p-Xylenes	0.76		ug/m3	0.043
Styrene	25		pptv	10
Styrene	0.11		ug/m3	0.043
o-Xylene	69		pptv	10
o-Xylene	0.30		ug/m3	0.043
1,3,5-Trimethylbenzene	13		pptv	10
1,3,5-Trimethylbenzene	0.065		ug/m3	0.049
1,2,4-Trimethylbenzene	59		pptv	10
1,2,4-Trimethylbenzene	0.29		ug/m3	0.049
Xylene (total)	240		pptv	10
Xylene (total)	1.1		ug/m3	0.043

Sample ID: WB05-14D Lab ID: 518235-005 Collected: 10/15/24 12:01

518235-005 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM				
Prep Method: METHOD Freon 12	400		mak.	10
	460 2.3		pptv	12
Freon 12 Chloromethane			ug/m3	0.059
	480		pptv	120
Chloromethane	1.0		ug/m3	0.25 12
Freon 114 Freon 114	16		pptv	
	0.11		ug/m3	0.084
Bromomethane	22		pptv	12
Bromomethane	0.084		ug/m3	0.047
Trichlorofluoromethane	190		pptv	12
Trichlorofluoromethane	1.1		ug/m3	0.067
Methylene Chloride	220		pptv	24
Methylene Chloride	0.76		ug/m3	0.083
Freon 113	61		pptv	12
Freon 113	0.46		ug/m3	0.092
Chloroform	32		pptv	12
Chloroform	0.16		ug/m3	0.059
1,2-Dichloroethane	15		pptv	12
1,2-Dichloroethane	0.061		ug/m3	0.049
Benzene	1,000		pptv	12
Benzene	3.2		ug/m3	0.038
Carbon Tetrachloride	73		pptv	12
Carbon Tetrachloride	0.46		ug/m3	0.075
Toluene	1,500		pptv	12
Toluene	5.8		ug/m3	0.045
Ethylbenzene	59		pptv	12
Ethylbenzene	0.26		ug/m3	0.052
m,p-Xylenes	170		pptv	12
m,p-Xylenes	0.73		ug/m3	0.052
Styrene	30		pptv	12
Styrene	0.13		ug/m3	0.051
o-Xylene	66		pptv	12
o-Xylene	0.29		ug/m3	0.052
1,3,5-Trimethylbenzene	15		pptv	12
1,3,5-Trimethylbenzene	0.074		ug/m3	0.059
1,2,4-Trimethylbenzene	59		pptv	12
1,2,4-Trimethylbenzene	0.29		ug/m3	0.059
Naphthalene	14		pptv	12
Naphthalene	0.074		ug/m3	0.063
Xylene (total)	230		pptv	12
Xylene (total)	1.0		ug/m3	0.052

Sample ID: WB06-14D Lab ID: 518235-006 Collected: 10/15/24 11:56

518235-006 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	470		pptv	10
Freon 12	2.3		ug/m3	0.049
Chloromethane	480		pptv	100
Chloromethane	1.0		ug/m3	0.21
Freon 114	17		pptv	10
Freon 114	0.12		ug/m3	0.070
Bromomethane	21		pptv	10
Bromomethane	0.081		ug/m3	0.039
Chloroethane	17		pptv	10
Chloroethane	0.045		ug/m3	0.026
Trichlorofluoromethane	190		pptv	10
Trichlorofluoromethane	1.1		ug/m3	0.056
Methylene Chloride	180		pptv	20
Methylene Chloride	0.62		ug/m3	0.069
Freon 113	61		pptv	10
Freon 113	0.46		ug/m3	0.077
Chloroform	31		pptv	10
Chloroform	0.15		ug/m3	0.049
1,2-Dichloroethane	15		pptv	10
1,2-Dichloroethane	0.062		ug/m3	0.040
Benzene	230		pptv	10
Benzene	0.74		ug/m3	0.032
Carbon Tetrachloride	74		pptv	10
Carbon Tetrachloride	0.47		ug/m3	0.063
Toluene	420		pptv	10
Toluene	1.6		ug/m3	0.038
Ethylbenzene	64		pptv	10
Ethylbenzene	0.28		ug/m3	0.043
m,p-Xylenes	170		pptv	10
m,p-Xylenes	0.74		ug/m3	0.043
Styrene	26		pptv	10
Styrene	0.11		ug/m3	0.043
o-Xylene	66		pptv	10
o-Xylene	0.29		ug/m3	0.043
1,3,5-Trimethylbenzene	13		pptv	10
1,3,5-Trimethylbenzene	0.065		ug/m3	0.049
1,2,4-Trimethylbenzene	54		pptv	10
1,2,4-Trimethylbenzene	0.26		ug/m3	0.049
Xylene (total)	240		pptv	10
Xylene (total)	1.0		ug/m3	0.043

Sample ID: WB07-14D Lab ID: 518235-007 Collected: 10/15/24 12:06

518235-007 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	460		pptv	10
Freon 12	2.3		ug/m3	0.049
Chloromethane	480		pptv	100
Chloromethane	0.99		ug/m3	0.21
Freon 114	17		pptv	10
Freon 114	0.12		ug/m3	0.070
Bromomethane	22		pptv	10
Bromomethane	0.085		ug/m3	0.039
Chloroethane	33		pptv	10
Chloroethane	0.088		ug/m3	0.026
Trichlorofluoromethane	190		pptv	10
Trichlorofluoromethane	1.1		ug/m3	0.056
Methylene Chloride	190		pptv	20
Methylene Chloride	0.67		ug/m3	0.069
Freon 113	60		pptv	10
Freon 113	0.46		ug/m3	0.077
Chloroform	29		pptv	10
Chloroform	0.14		ug/m3	0.049
1,2-Dichloroethane	15		pptv	10
1,2-Dichloroethane	0.061		ug/m3	0.040
Benzene	220		pptv	10
Benzene	0.72		ug/m3	0.032
Carbon Tetrachloride	73		pptv	10
Carbon Tetrachloride	0.46		ug/m3	0.063
Toluene	390		pptv	10
Toluene	1.5		ug/m3	0.038
Ethylbenzene	60		pptv	10
Ethylbenzene	0.26		ug/m3	0.043
m,p-Xylenes	160		pptv	10
m,p-Xylenes	0.71		ug/m3	0.043
Styrene	29		pptv	10
Styrene	0.12		ug/m3	0.043
o-Xylene	65		pptv	10
o-Xylene	0.28		ug/m3	0.043
1,3,5-Trimethylbenzene	13		pptv	10
1,3,5-Trimethylbenzene	0.065		ug/m3	0.049
1,2,4-Trimethylbenzene	58		pptv	10
1,2,4-Trimethylbenzene	0.29		ug/m3	0.049
Naphthalene	11		pptv	10
Naphthalene	0.059		ug/m3	0.052
Xylene (total)	230		pptv	10
Xylene (total)	0.99		ug/m3	0.043

Sample ID: WB08-14D Lab ID: 518235-008 Collected: 10/15/24 12:11

518235-008 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM				
Prep Method: METHOD	470			
Freon 12	470		pptv	11
Freon 12	2.3		ug/m3	0.054
Chloromethane	490		pptv	110
Chloromethane	1.0		ug/m3	0.23
Freon 114	17		pptv	11
Freon 114	0.12		ug/m3	0.077
Bromomethane	21		pptv	11
Bromomethane	0.080		ug/m3	0.043
Chloroethane	22		pptv	11
Chloroethane	0.058		ug/m3	0.029
Trichlorofluoromethane	200		pptv	11
Trichlorofluoromethane	1.1		ug/m3	0.062
Methylene Chloride	210		pptv	22
Methylene Chloride	0.74		ug/m3	0.076
Freon 113	61		pptv	11
Freon 113	0.47		ug/m3	0.084
Chloroform	28		pptv	11
Chloroform	0.14		ug/m3	0.054
1,2-Dichloroethane	15		pptv	11
1,2-Dichloroethane	0.062		ug/m3	0.045
Benzene	230		pptv	11
Benzene	0.74		ug/m3	0.035
Carbon Tetrachloride	74		pptv	11
Carbon Tetrachloride	0.47		ug/m3	0.069
Toluene	400		pptv	11
Toluene	1.5		ug/m3	0.041
Ethylbenzene	59		pptv	11
Ethylbenzene	0.26		ug/m3	0.048
m,p-Xylenes	160		pptv	11
m,p-Xylenes	0.70		ug/m3	0.048
Styrene	23		pptv	11
Styrene	0.099		ug/m3	0.047
o-Xylene	65		pptv	11
o-Xylene	0.28		ug/m3	0.048
1,3,5-Trimethylbenzene	12		pptv	11
1,3,5-Trimethylbenzene	0.061		ug/m3	0.054
1,2,4-Trimethylbenzene	54		pptv	11
1,2,4-Trimethylbenzene	0.27		ug/m3	0.054
Xylene (total)	230		pptv	11
Xylene (total)	0.98		ug/m3	0.048

Sample ID: WB09-14D Lab ID: 518235-009 Collected: 10/15/24 11:05

518235-009 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	470		pptv	10
Freon 12	2.3		ug/m3	0.049
Chloromethane	490		pptv	100
Chloromethane	1.0		ug/m3	0.21
Freon 114	17		pptv	10
Freon 114	0.12		ug/m3	0.070
Bromomethane	24		pptv	10
Bromomethane	0.092		ug/m3	0.039
Chloroethane	16		pptv	10
Chloroethane	0.042		ug/m3	0.026
Trichlorofluoromethane	200		pptv	10
Trichlorofluoromethane	1.1		ug/m3	0.056
Methylene Chloride	820		pptv	20
Methylene Chloride	2.8		ug/m3	0.069
Freon 113	61		pptv	10
Freon 113	0.47		ug/m3	0.077
Chloroform	37		pptv	10
Chloroform	0.18		ug/m3	0.049
1,2-Dichloroethane	16		pptv	10
1,2-Dichloroethane	0.063		ug/m3	0.040
Benzene	250		pptv	10
Benzene	0.81		ug/m3	0.032
Carbon Tetrachloride	74		pptv	10
Carbon Tetrachloride	0.47		ug/m3	0.063
Toluene	420		pptv	1(
Toluene	1.6		ug/m3	0.038
Ethylbenzene	62		pptv	1(
Ethylbenzene	0.27		ug/m3	0.043
m,p-Xylenes	180		pptv	1(
m,p-Xylenes	0.79		ug/m3	0.043
Styrene	29		pptv	10
Styrene	0.12		ug/m3	0.043
o-Xylene	72		pptv	10
o-Xylene	0.31		ug/m3	0.043
1,3,5-Trimethylbenzene	14		pptv	10
1,3,5-Trimethylbenzene	0.068		ug/m3	0.049
1,2,4-Trimethylbenzene	59		pptv	10
1,2,4-Trimethylbenzene	0.29		ug/m3	0.049
Naphthalene	15		pptv	10
Naphthalene	0.078		ug/m3	0.052
Xylene (total)	250		pptv	10
Xylene (total)	1.1		ug/m3	0.043

Sample ID: WB10-14D Lab ID: 518235-010 Collected: 10/15/24 11:12

518235-010 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	460		pptv	10
Freon 12	2.3		ug/m3	0.049
Chloromethane	480		pptv	100
Chloromethane	0.98		ug/m3	0.21
Freon 114	17		pptv	10
Freon 114	0.12		ug/m3	0.070
Bromomethane	21		pptv	10
Bromomethane	0.083		ug/m3	0.039
Trichlorofluoromethane	190		pptv	10
Trichlorofluoromethane	1.1			0.056
			ug/m3	20
Methylene Chloride	250		pptv	
Methylene Chloride	0.85		ug/m3	0.069
Freon 113	60		pptv	10
Freon 113	0.46		ug/m3	0.077
Chloroform	31		pptv	10
Chloroform	0.15		ug/m3	0.049
1,2-Dichloroethane	18		pptv	10
1,2-Dichloroethane	0.072		ug/m3	0.040
Benzene	310		pptv	10
Benzene	0.99		ug/m3	0.032
Carbon Tetrachloride	73		pptv	10
Carbon Tetrachloride	0.46		ug/m3	0.063
Toluene	350		pptv	10
Toluene	1.3		ug/m3	0.038
Ethylbenzene	100		pptv	10
Ethylbenzene	0.45		ug/m3	0.043
m,p-Xylenes	270		pptv	10
m,p-Xylenes	1.2		ug/m3	0.043
Styrene	32		pptv	10
Styrene	0.13		ug/m3	0.043
o-Xylene	84		pptv	10
o-Xylene	0.37		ug/m3	0.043
1,3,5-Trimethylbenzene	28		pptv	10
1,3,5-Trimethylbenzene	0.14		ug/m3	0.049
1,2,4-Trimethylbenzene	100		pptv	10
1,2,4-Trimethylbenzene	0.50		ug/m3	0.049
Naphthalene	26		pptv	10
Naphthalene	0.14		ug/m3	0.052
Xylene (total)	350		pptv	10
Xylene (total)	1.5		ug/m3	0.043

Sample ID: WB11-14D Lab ID: 518235-011 Collected: 10/15/24 11:16

518235-011 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	470		pptv	10
Freon 12	2.3		ug/m3	0.049
Chloromethane	490		pptv	100
Chloromethane	1.0		ug/m3	0.21
Freon 114	17		pptv	10
Freon 114	0.12		ug/m3	0.070
Bromomethane	23		pptv	10
Bromomethane	0.089		ug/m3	0.039
Chloroethane	34		pptv	10
Chloroethane	0.089		ug/m3	0.026
Trichlorofluoromethane	190		pptv	10
Trichlorofluoromethane	1.1		ug/m3	0.056
Methylene Chloride	160		pptv	20
Methylene Chloride	0.57		ug/m3	0.069
Freon 113	61		pptv	10
Freon 113	0.47		ug/m3	0.077
Chloroform	29		pptv	10
Chloroform	0.14		ug/m3	0.049
1,2-Dichloroethane	15		pptv	10
1,2-Dichloroethane	0.061		ug/m3	0.040
Benzene	240		pptv	10
Benzene	0.78		ug/m3	0.032
Carbon Tetrachloride	74		pptv	10
Carbon Tetrachloride	0.47		ug/m3	0.063
Toluene	440		pptv	1(
Toluene	1.6		ug/m3	0.038
Ethylbenzene	61		pptv	10
Ethylbenzene	0.27		ug/m3	0.043
m,p-Xylenes	180		pptv	10
m,p-Xylenes	0.78		ug/m3	0.043
Styrene	31		pptv	10
Styrene	0.13		ug/m3	0.043
o-Xylene	70		pptv	10
o-Xylene	0.31		ug/m3	0.043
1,3,5-Trimethylbenzene	15		pptv	10
1,3,5-Trimethylbenzene	0.073		ug/m3	0.049
1,2,4-Trimethylbenzene	60		pptv	10
1,2,4-Trimethylbenzene	0.30		ug/m3	0.049
Naphthalene	16		pptv	10
Naphthalene	0.086		ug/m3	0.052
Xylene (total)	250		pptv	10
Xylene (total)	1.1		ug/m3	0.043

Sample ID: WB12-14D Lab ID: 518235-012 Collected: 10/15/24 11:20

518235-012 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM				
Prep Method: METHOD				
Freon 12	460		pptv	10
Freon 12	2.3		ug/m3	0.049
Chloromethane	490		pptv	100
Chloromethane	1.0		ug/m3	0.21
Freon 114	17		pptv	10
Freon 114	0.12		ug/m3	0.070
Bromomethane	21		pptv	10
Bromomethane	0.081		ug/m3	0.039
Chloroethane	39		pptv	10
Chloroethane	0.10		ug/m3	0.026
Trichlorofluoromethane	190		pptv	10
Trichlorofluoromethane	1.1		ug/m3	0.056
Methylene Chloride	160		pptv	20
Methylene Chloride	0.57		ug/m3	0.069
Freon 113	61		pptv	10
Freon 113	0.46		ug/m3	0.077
Chloroform	29		pptv	10
Chloroform	0.14		ug/m3	0.049
1,2-Dichloroethane	15		pptv	10
1,2-Dichloroethane	0.062		ug/m3	0.040
Benzene	270		pptv	10
Benzene	0.85		ug/m3	0.032
Carbon Tetrachloride	73		pptv	10
Carbon Tetrachloride	0.46		ug/m3	0.063
Toluene	490		pptv	10
Toluene	1.9		ug/m3	0.038
Ethylbenzene	68		pptv	10
Ethylbenzene	0.29		ug/m3	0.043
m,p-Xylenes	190		pptv	10
m,p-Xylenes	0.83		ug/m3	0.043
Styrene	32		pptv	10
Styrene	0.14		ug/m3	0.043
o-Xylene	75		pptv	10
o-Xylene	0.33		ug/m3	0.043
1,3,5-Trimethylbenzene	15		pptv	10
1,3,5-Trimethylbenzene	0.074		ug/m3	0.049
1,2,4-Trimethylbenzene	64		pptv	10
1,2,4-Trimethylbenzene	0.32		ug/m3	0.049
Naphthalene	11		pptv	10
Naphthalene	0.059		ug/m3	0.052
Xylene (total)	270		pptv	10
Xylene (total)	1.2		ug/m3	0.043

Sample ID: WB13-14D Lab ID: 518235-013 Collected: 10/15/24 11:24

518235-013 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	460		pptv	11
Freon 12	2.3		ug/m3	0.054
Chloromethane	490		pptv	110
Chloromethane	1.0		ug/m3	0.23
Freon 114	16		pptv	11
Freon 114	0.11		ug/m3	0.077
Bromomethane	21		pptv	11
Bromomethane	0.083		ug/m3	0.043
Trichlorofluoromethane	190		pptv	11
Trichlorofluoromethane	1.1		ug/m3	0.062
Methylene Chloride	170		pptv	22
Methylene Chloride	0.60		ug/m3	0.076
Freon 113	59		pptv	11
Freon 113	0.46		ug/m3	0.084
Chloroform	35		pptv	11
Chloroform	0.17		ug/m3	0.054
1,2-Dichloroethane	16		pptv	11
1,2-Dichloroethane	0.065		ug/m3	0.045
Benzene	280		pptv	11
Benzene	0.89		ug/m3	0.035
Carbon Tetrachloride	72		pptv	11
Carbon Tetrachloride	0.46		ug/m3	0.069
Toluene	530		pptv	11
Toluene	2.0		ug/m3	0.041
Tetrachloroethene	12		pptv	11
Tetrachloroethene	0.080		ug/m3	0.075
Ethylbenzene	72		pptv	11
Ethylbenzene	0.31		ug/m3	0.048
m,p-Xylenes	220		pptv	11
m,p-Xylenes	0.94		ug/m3	0.048
Styrene	76		pptv	11
Styrene	0.32		ug/m3	0.047
o-Xylene	86		pptv	11
o-Xylene	0.37		ug/m3	0.048
1,3,5-Trimethylbenzene	17		pptv	11
1,3,5-Trimethylbenzene	0.085		ug/m3	0.054
1,2,4-Trimethylbenzene	72		pptv	11
1,2,4-Trimethylbenzene	0.35		ug/m3	0.054
Naphthalene	23		pptv	11
Naphthalene	0.12		ug/m3	0.058
Xylene (total)	300		pptv	11
Xylene (total)	1.3		ug/m3	0.048

Sample ID: WB14-14D Lab ID: 518235-014 Collected: 10/15/24 11:28

518235-014 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	460		pptv	10
Freon 12	2.3		ug/m3	0.049
Chloromethane	490		pptv	100
Chloromethane	1.0		ug/m3	0.21
Freon 114	16		pptv	10
Freon 114	0.11		ug/m3	0.070
Bromomethane	22		pptv	10
Bromomethane	0.085		ug/m3	0.039
Trichlorofluoromethane	190		pptv	10
Trichlorofluoromethane	1.1		ug/m3	0.056
Methylene Chloride	170		pptv	20
Methylene Chloride	0.59		ug/m3	0.069
Freon 113	60			10
Freon 113	0.46		pptv ug/m3	0.077
Chloroform	27			10
Chloroform	0.13		pptv ug/m3	0.049
1,2-Dichloroethane	16			10
1,2-Dichloroethane	0.063		pptv	0.040
1,2-Dichloroethane Benzene	240		ug/m3	10
Benzene	0.78		pptv	0.032
Carbon Tetrachloride	73		ug/m3	10
Carbon Tetrachloride Carbon Tetrachloride	0.46		pptv	0.063
Toluene	350		ug/m3	10
Toluene	1.3		pptv	0.038
			ug/m3	
Ethylbenzene	60 0.26		pptv	0.043
Ethylbenzene	170		ug/m3	
m,p-Xylenes			pptv	10
m,p-Xylenes	0.75		ug/m3	0.043
Styrene	20		pptv	10
Styrene	0.086		ug/m3	0.043
o-Xylene	68		pptv	10
o-Xylene	0.30		ug/m3	0.043
1,3,5-Trimethylbenzene	14		pptv	10
1,3,5-Trimethylbenzene	0.067		ug/m3	0.049
1,2,4-Trimethylbenzene	55		pptv	10
1,2,4-Trimethylbenzene	0.27		ug/m3	0.049
Naphthalene	11		pptv	10
Naphthalene	0.057		ug/m3	0.052
Xylene (total)	240		pptv	10
Xylene (total)	1.1		ug/m3	0.043

Sample ID: WB17-14D Lab ID: 518235-015 Collected: 10/15/24 09:40

518235-015 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	460		pptv	11
Freon 12	2.3		ug/m3	0.054
Chloromethane	480		pptv	110
Chloromethane	1.0		ug/m3	0.23
Freon 114	16		pptv	11
Freon 114	0.11		ug/m3	0.077
Bromomethane	22		pptv	11
Bromomethane	0.084		ug/m3	0.043
Chloroethane	12		pptv	11
Chloroethane	0.032		ug/m3	0.029
Trichlorofluoromethane	190		pptv	11
Trichlorofluoromethane	1.1		ug/m3	0.062
Methylene Chloride	150		pptv	22
Methylene Chloride	0.53		ug/m3	0.076
Freon 113	60		pptv	11
Freon 113	0.46		ug/m3	0.084
Chloroform	29		pptv	11
Chloroform	0.14		ug/m3	0.054
1,2-Dichloroethane	15		pptv	11
1,2-Dichloroethane	0.062		ug/m3	0.045
Benzene	260		pptv	11
Benzene	0.82		ug/m3	0.035
Carbon Tetrachloride	72		pptv	11
Carbon Tetrachloride	0.46		ug/m3	0.069
Toluene	450		pptv	11
Toluene	1.7		ug/m3	0.041
Ethylbenzene	69		pptv	11
Ethylbenzene	0.30		ug/m3	0.048
m,p-Xylenes	200		pptv	11
m,p-Xylenes	0.89		ug/m3	0.048
Styrene	30		pptv	11
Styrene	0.13		ug/m3	0.047
o-Xylene	81		pptv	11
o-Xylene	0.35		ug/m3	0.048
1,3,5-Trimethylbenzene	17		pptv	11
1,3,5-Trimethylbenzene	0.085		ug/m3	0.054
1,2,4-Trimethylbenzene	67		pptv	11
1,2,4-Trimethylbenzene	0.33		ug/m3	0.054
Naphthalene	14		pptv	11
Naphthalene	0.072		ug/m3	0.058
Xylene (total)	290		pptv	11
Xylene (total)	1.2		ug/m3	0.048

Sample ID: WB18-14D Lab ID: 518235-016 Collected: 10/15/24 10:28

518235-016 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM				
Prep Method: METHOD				
Freon 12	480		pptv	12
Freon 12	2.4		ug/m3	0.059
Chloromethane	510		pptv	120
Chloromethane	1.1		ug/m3	0.25
Freon 114	17		pptv	12
Freon 114	0.12		ug/m3	0.084
Bromomethane	28		pptv	12
Bromomethane	0.11		ug/m3	0.047
Chloroethane	13		pptv	12
Chloroethane	0.035		ug/m3	0.032
Trichlorofluoromethane	200		pptv	12
Trichlorofluoromethane	1.1		ug/m3	0.067
Methylene Chloride	160		pptv	24
Methylene Chloride	0.56		ug/m3	0.083
Freon 113	62		pptv	12
Freon 113	0.47		ug/m3	0.092
Chloroform	29		pptv	12
Chloroform	0.14		ug/m3	0.059
1,2-Dichloroethane	15		pptv	12
1,2-Dichloroethane	0.062		ug/m3	0.049
Benzene	250		pptv	12
Benzene	0.79		ug/m3	0.038
Carbon Tetrachloride	75		pptv	12
Carbon Tetrachloride	0.47		ug/m3	0.075
Toluene	440		pptv	12
Toluene	1.7		ug/m3	0.045
Ethylbenzene	68		pptv	12
Ethylbenzene	0.30		ug/m3	0.052
m,p-Xylenes	200		pptv	12
m,p-Xylenes	0.88		ug/m3	0.052
Styrene	31		pptv	12
Styrene	0.13		ug/m3	0.051
o-Xylene	81		pptv	12
o-Xylene	0.35		ug/m3	0.052
1,3,5-Trimethylbenzene	22		pptv	12
1,3,5-Trimethylbenzene	0.11		ug/m3	0.059
1,2,4-Trimethylbenzene	89		pptv	12
1,2,4-Trimethylbenzene	0.44		ug/m3	0.059
Naphthalene	14		pptv	12
Naphthalene	0.073		ug/m3	0.063
Xylene (total)	280		pptv	12
Xylene (total)	1.2		ug/m3	0.052

Sample ID: WB19-14D Lab ID: 518235-017 Collected: 10/15/24 14:44

518235-017 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	460		pptv	11
Freon 12	2.3		ug/m3	0.054
Chloromethane	500		pptv	110
Chloromethane	1.0		ug/m3	0.23
Freon 114	16		pptv	11
Freon 114	0.11		ug/m3	0.077
Bromomethane	21		pptv	11
Bromomethane	0.080		ug/m3	0.043
Chloroethane	26		pptv	11
Chloroethane	0.069		ug/m3	0.029
Trichlorofluoromethane	190		pptv	11
Trichlorofluoromethane	1.1		ug/m3	0.062
Methylene Chloride	140		pptv	22
Methylene Chloride	0.50		ug/m3	0.076
Freon 113	59		pptv	11
Freon 113	0.45		ug/m3	0.084
Chloroform	27		pptv	11
Chloroform	0.13		ug/m3	0.054
1,2-Dichloroethane	17		pptv	11
1,2-Dichloroethane	0.067		ug/m3	0.045
Benzene	320		pptv	11
Benzene	1.0		ug/m3	0.035
Carbon Tetrachloride	71		pptv	11
Carbon Tetrachloride	0.45		ug/m3	0.069
Toluene	480		pptv	11
Toluene	1.8		ug/m3	0.041
Ethylbenzene	72		pptv	11
Ethylbenzene	0.31		ug/m3	0.048
m,p-Xylenes	220		pptv	11
m,p-Xylenes	0.95		ug/m3	0.048
Styrene	42		pptv	11
Styrene	0.18		ug/m3	0.047
o-Xylene	86		pptv	11
o-Xylene	0.37		ug/m3	0.048
1,3,5-Trimethylbenzene	17		pptv	11
1,3,5-Trimethylbenzene	0.081		ug/m3	0.054
1,2,4-Trimethylbenzene	62		pptv	11
1,2,4-Trimethylbenzene	0.30		ug/m3	0.054
Xylene (total)	300		pptv	11
Xylene (total)	1.3		ug/m3	0.048

Air Chain of Custody Record Required Turnaround Time \$ 0000 5 Day 3 Day 2 Day 10/15/24 Standard 1 Day 0/5/10 Custom TAT **Analysis Request** Lab Quote Number: PO Number: 91-01 miz 8 4 × × × Y × × × ES-En Sc Canister Pressure S 9 9 3 1 8 و ENTHALPY Stop Sampling Information 105 1071 1706 10/19/24 1156 134 Walnut Bluff Work Plan 1021 1201 11 11 hz/51/01 10/15/24 1112 10/12/24 1150 1137 11 21 12/5/19 17/41/01 HZ/61/01 PROJECT INFORMATION 42/51/0, Flizobeth Hwang Canister Pressure (in. Hg) 30 30 28 57 30 N 3 31 3 3 Merbeth Huam Start Sampling Information 470238 10/124 1049 A 70102 10/1/24 1044 6 | 470124 | 10/1/24 | 1126 A 70027 60/1/24 1133 A 70413 (10/1/24 1120 \$70110 10/124 1147 87063 16/1/24 1143 A76403 101/24 1152 A70079 101/24 1201 1157 Time Sampled By: A 76248 10/1/24 Global ID: Address Date Name: Flow Controller ID Equipment Information Canister Size (6L or 1L) Catalyst Environmental Solutions او 770059 6 9 و ٯ و ڡ ی C70903 G 570331 AND THE 52095 C70860 076916 C70901 210012 C7 6914 Canister ID 315 Montana Ave, Suite 311 **CUSTOMER INFORMATION** ybayram Cce. solutions Santa Monica, CA, 90403 (I) Indoor (A) Ambient (SV) Soil Vapor Air Type K \$ 4 A A T V V A 4 Vola Bayram (313) 204 - 8471 931 W. Barkley Ave., Orange, CA 92868 Phone: (714) 771-6900 Fax: (714) 538-1209 WB ON THOO MB10-14D MB05-14D W810 - 14D WB03-14D W807-14D WB09-14D WB08-14D MB01-1412 WB02-140 Special Instructions RELINQUISHED RELINQUISHED ELINQUISHED RECEIVED BY: ECEIVED BY: Company: Report To: RECEIVED BY: Address: Phone: Email:

Air Chain of Custody Record Page 2 931 W. Barkley Ave., Orange, CA 92868 Phone: (714) 771-6900 Fax: (714) 538-1209

Catalyst Environmental Solutions	NS Name:	.ie	Waln	PROJECT INFORM WAINUT BLUFF	¥	Work Plan	مح	PO Number:	
	Number	lber:						Lab Quote Number:	
y payram e ce, solutions	Add	Address:						Analysis Request	
Ta Monica, CA, 90403	OB	Global ID:							Kequired Lurnaround Time
	Sam	Sampled By:	Elizal	oeth t	Elizabeth Hwand				Standard X
	-							W.185	5 Day
Equipment Information	nation	Start Sa	Start Sampling Information	tion	Stop	Stop Sampling Information	nation	1- (1 Day
Canister ID Size (6L or 1L)	Flow Controller ID	Date	Time	Canister Pressure (in. Hg)	Date	Time	Canister Pressure (in. Hg)	0,1	Comments
C70352 6	A 70404 10/1/24		1055	30	h7/51/01	11:16	5	V	
C70908 6	A70144 10/1/24		1103	31	h2/51/01	11:20	8	*	
C 70249 6	A70531 1011/24		011		42:11 hz/51/01	11:24	7	×	
C70309 6	A70014 19/1/24		911	30	10/15/24	11:28	3	×	
C70938 6	A 70230 10/1/24	1/24	0935	30	10/15/24 0940	0460	8	×	
C70812 6	A 70252 19/1/24		1020	31	hr2/51/01	82.01	01	×	
٠	A70118 19	l 42/1/01	1461	30	51/01	1444	0	×	
		PRINT NAME	WE			8	COMPANY/TITLE		DATE / TIME
	Flish	the f	twan	5,	C.	5- 5	Mr. S	9	81:21 ha/51/
	Tisk	911			17	Halp.		2)	1/5/24 17/8

١

SAMPLE RECEIP	T CHECKLIST		-	
Section 1: General Info				
Date Received: 10/15/24 WO# 518235 Clien	nt: Catalyst Environmental Solutions		ENTH	ALPY
Section 2: Shipping / Custody	Are custody sea	ls present	t? 🗆 Yes	☑ No
Custody seals intact on arrival? ☑ N/A ☐ Yes ☐ No ☐ C	On cooler / box 🗆 On samples			
Shipping Info:				
Section 3a: Condition / Packaging	Outside 0.0 - 6.0°C (0.0 - 10.0°C for mi	crobiolog	y) (PM no	otified)
Date Opened 10/15/24 By (initials) TLK Type	e of ice used :	□None	e	
\square Samples received on ice directly from the field; cooling process ha	d begun. (if checked, skip temperature	s)		
Sample matrix doesn't require cooling (e.g. air, bulk PCB). (if check	ed, skip temperatures)			
If no cooler: Observed/Adjusted Temp (°C)://			:F:	_
Cooler Temp (°C) #1:/#2:/#3:/#				
Section 3b: Microbiology Samples	No microbiology sam	iples subn	nitted (sl	(ip 3b)
☐ Within temp range 0.0 - 10.0°C or received on ice directly from fiel	d.			
☐ Adequate headspace for microbiology analysis.				
Section 3c: Air Samples	☐ No air san		mitted (s	kip 3c)
□ 1.4L Canisters □ 6L Canisters □ Tedlar Bags □ MCE Ca	ssettes 🗖 Sorbent Tubes 🗖 Ot	her		
Section 4: Containers / Labels / Samples		YES	NO	N/A
1) Were custody papers present, filled properly, and legible?		x		
2) Is the sampler's name present on the CoC?		х		
3) Were containers received in good condition (unbroken / unopened	/ uncompromised)?	x		
4) Were the samples bagged? (required for microbiology samples; rec	ommended for soil samples)			х
5) Were all of, and only, the correct samples received?		х		
6) Are sample labels present, legible, and in agreement with the CoC?			x	
7) Does the container count match the CoC?		х		
8) Was sufficient sample volume / mass received for the analyses requ	uested?	х		
9) Were samples received in proper containers for the analyses reque	sted?	х		
10) Were samples received with > 1/2 holding time remaining?		х		
11) Are samples properly preserved as indicated by CoC / labels?		х		
12) Unpreserved VOAs received - If necessary, was the hold time char	ged in LIMS?			х
13) Are VOA vials free from headspace/bubbles > 6mm?				Х
Section 5: Explanations / Comments		☑ PM no	otified	
Sample 17 did not have a corresponding label on any container. Samp	lo determined via conjeter ID			-
Sample 17 did not have a corresponding laber on any container. Samp	ie determined via Carrister ID			
				_
				- 1
Date Logged 10/15/24 By (print) Tris Kelly	(sign) (ris WW			
Date Labeled 10/15/24 By (print) Tris Kelly	(sign) Trong	_		-
	(3.8.1)			-

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB01-14D Batch#: 352933 Prep: METHOD

Lab ID: 518235-001 **Sampled:** 10/15/24 11:37 **Analysis:** EPA TO-15 SIM

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.100 **Analyzed:** 10/16/24 10:34

518235-001 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	460	11	pptv	2.3	0.054	ug/m3
Chloromethane	480	110	pptv	0.99	0.23	ug/m3
Freon 114	16	11	pptv	0.11	0.077	ug/m3
Vinyl Chloride	ND	11	pptv	ND	0.028	ug/m3
Bromomethane	21	11	pptv	0.080	0.043	ug/m3
Chloroethane	ND	11	pptv	ND	0.029	ug/m3
Vinyl bromide	ND	11	pptv	ND	0.048	ug/m3
Trichlorofluoromethane	190	11	pptv	1.1	0.062	ug/m3
1,1-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
Methylene Chloride	160	22	pptv	0.55	0.076	ug/m3
Freon 113	60	11	pptv	0.46	0.084	ug/m3
trans-1,2-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
1,1-Dichloroethane	ND	11	pptv	ND	0.045	ug/m3
cis-1,2-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
Chloroform	28	11	pptv	0.14	0.054	ug/m3
1,2-Dichloroethane	16	11	pptv	0.063	0.045	ug/m3
1,1,1-Trichloroethane	ND	11	pptv	ND	0.060	ug/m3
Benzene	250	11	pptv	0.80	0.035	ug/m3
Carbon Tetrachloride	73	11	pptv	0.46	0.069	ug/m3
1,2-Dichloropropane	ND	11	pptv	ND	0.051	ug/m3
Bromodichloromethane	ND	11	pptv	ND	0.074	ug/m3
Trichloroethene	ND	11	pptv	ND	0.059	ug/m3
cis-1,3-Dichloropropene	ND	11	pptv	ND	0.050	ug/m3
trans-1,3-Dichloropropene	ND	11	pptv	ND	0.050	ug/m3
1,1,2-Trichloroethane	ND	11	pptv	ND	0.060	ug/m3
Toluene	360	11	pptv	1.4	0.041	ug/m3
Dibromochloromethane	ND	11	pptv	ND	0.094	ug/m3
1,2-Dibromoethane	ND	11	pptv	ND	0.085	ug/m3
Tetrachloroethene	ND ND	11 11	pptv	ND ND	0.075 0.051	ug/m3
Chlorobenzene Ethylbenzene	63	11	pptv	0.27	0.051	ug/m3
m,p-Xylenes	180	11	pptv pptv	0.79	0.048	ug/m3 ug/m3
Bromoform	ND	11	pptv	ND	0.11	ug/m3
Styrene	24	11	pptv	0.10	0.047	ug/m3
o-Xylene	73	11	pptv	0.32	0.048	ug/m3
2-Chlorotoluene	ND	11	pptv	ND	0.057	ug/m3
1,3,5-Trimethylbenzene	15	11	pptv	0.074	0.054	ug/m3
1,2,4-Trimethylbenzene	61	11	pptv	0.30	0.054	ug/m3
Benzyl chloride	ND	11	pptv	ND	0.057	ug/m3
1,3-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,4-Dichlorobenzene	ND	<u>11</u>	pptv	ND ND	0.066	ug/m3
1,2-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,2,4-Trichlorobenzene	ND	11	pptv	ND	0.082	ug/m3
1,1,2,2-Tetrachloroethane	ND	11	pptv	ND	0.076	ug/m3
1,1,1,2-Tetrachloroethane	ND	11	pptv	ND	0.076	ug/m3
Naphthalene	11	11	pptv	0.059	0.058	ug/m3
	••		PP.,	0.000	0.000	

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Cheff. Calalyst Environment	ai Solutions		Localic	III. Walilul Diu	ii vvoikpi	all
518235-001 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	11	pptv	ND	0.12	ug/m3
Xylene (total)	250	11	pptv	1.1	0.048	ug/m3
518235-001 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			94	60-140	ug	/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB02-14D Batch#: 352933 Prep: METHOD

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.000 **Analyzed:** 10/16/24 11:41

518235-002 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	470	10	pptv	2.3	0.049	ug/m3
Chloromethane	480	100	pptv	0.99	0.21	ug/m3
Freon 114	16	10	pptv	0.12	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	22	10	pptv	0.084	0.039	ug/m3
Chloroethane	19	10	pptv	0.049	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	180	10	pptv	1.0	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	170	20	pptv	0.60	0.069	ug/m3
Freon 113	58	10	pptv	0.44	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	32	10	pptv	0.16	0.049	ug/m3
1,2-Dichloroethane	16	10	pptv	0.066	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	260	10	pptv	0.83	0.032	ug/m3
Carbon Tetrachloride	71	10	pptv	0.45	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Trichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
trans-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Toluene	410	10	pptv	1.5	0.038	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.068	ug/m3
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3
Ethylbenzene	75	10	pptv	0.33	0.043	ug/m3
m,p-Xylenes	210	10	pptv	0.90	0.043	ug/m3
Bromoform	ND	10	pptv	ND	0.10	ug/m3
Styrene	28	10	pptv	0.12	0.043	ug/m3
o-Xylene	82	10	pptv	0.35	0.043	ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
1,3,5-Trimethylbenzene	20	10	pptv	0.10	0.049	ug/m3
1,2,4-Trimethylbenzene	74	10	pptv	0.37	0.049	ug/m3
Benzyl chloride	ND	10	pptv	ND	0.052	ug/m3
1,3-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND	10	pptv	ND	0.074	ug/m3
1,1,2,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
Naphthalene	15	10	pptv	0.077	0.052	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Chem. Catalyst Environi	nental Solutions		Localic	ii. wainut biu	ii vvoikpi	an
518235-002 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	290	10	pptv	1.3	0.043	ug/m3
518235-002 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			95	60-140	uc	ı/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB03-14D Batch#: 352933 Prep: METHOD

Lab ID: 518235-003 **Sampled:** 10/15/24 11:46 **Analysis:** EPA TO-15 SIM

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.000 **Analyzed:** 10/16/24 13:06

518235-003 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	470	10	pptv	2.3	0.049	ug/m3
Chloromethane	490	100	pptv	1.0	0.21	ug/m3
Freon 114	17	10	pptv	0.12	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	21	10	pptv	0.082	0.039	ug/m3
Chloroethane	ND	10	pptv	ND	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	200	10	pptv	1.1	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	170	20	pptv	0.59	0.069	ug/m3
Freon 113	61	10	pptv	0.47	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	34	10	pptv	0.17	0.049	ug/m3
1,2-Dichloroethane	15	10	pptv	0.062	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	230	10	pptv	0.72	0.032	ug/m3
Carbon Tetrachloride	75 ND	10 10	pptv	0.47 ND	0.063 0.046	ug/m3
1,2-Dichloropropane			pptv			ug/m3
Bromodichloromethane Trichloroethene	ND ND	10 10	pptv	ND ND	0.067 0.054	ug/m3 ug/m3
cis-1,3-Dichloropropene	ND ND	10	pptv pptv	ND ND	0.034	ug/m3
trans-1,3-Dichloropropene	ND ND	10	pptv	ND ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv	ND ND	0.055	ug/m3
Toluene	330	10	pptv	1.2	0.038	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.068	ug/m3
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3
Ethylbenzene	57	10	pptv	0.25	0.043	ug/m3
m,p-Xylenes	160	10	pptv	0.71	0.043	ug/m3
Bromoform	ND	10	pptv	ND	0.10	ug/m3
Styrene	18	10	pptv	0.076	0.043	ug/m3
o-Xylene	65	10	pptv	0.28	0.043	ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
1,3,5-Trimethylbenzene	11	10	pptv	0.055	0.049	ug/m3
1,2,4-Trimethylbenzene	48	10	pptv	0.24	0.049	ug/m3
Benzyl chloride	ND	10	pptv	ND	0.052	ug/m3
1,3-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND	10	pptv	ND	0.074	ug/m3
1,1,2,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
Naphthalene	ND	10	pptv	ND	0.052	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Onem. Oatalyst Environi	nental Colutions		Localic	ii. vvainat bid	ii wwoinpi	an
518235-003 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	230	10	pptv	0.99	0.043	ug/m3
518235-003 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			96	60-140	ug	g/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB04-14D Batch#: 352933 Prep: METHOD

 Lab ID:
 518235-004
 Sampled:
 10/15/24 11:50
 Analysis:
 EPA TO-15 SIM

 Matrix:
 Air
 Received:
 10/15/24
 Analyst:
 OHD

Diln Fac: 1.000 **Analyzed:** 10/16/24 13:55

518235-004 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	470	10	pptv	2.3	0.049	ug/m3
Chloromethane	490	100	pptv	1.0	0.21	ug/m3
Freon 114	16	10	pptv	0.12	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	19	10	pptv	0.075	0.039	ug/m3
Chloroethane	ND	10	pptv	ND	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	200	10	pptv	1.1	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	340	20	pptv	1.2	0.069	ug/m3
Freon 113	61	10	pptv	0.47	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	33	10	pptv	0.16	0.049	ug/m3
1,2-Dichloroethane	15	10	pptv	0.062	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	230	10	pptv	0.74	0.032	ug/m3
Carbon Tetrachloride	75	10	pptv	0.47	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Trichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
trans-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Toluene	380	10	pptv	1.4	0.038	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.068	ug/m3
Chlorobenzene	ND ND	10	pptv	ND ND	0.046	ug/m3
Ethylbenzene	60	10	pptv	0.26	0.043	ug/m3
m,p-Xylenes	180	10	pptv	0.76	0.043	ug/m3
Bromoform	ND	10		ND	0.10	ug/m3
Styrene	25	10	pptv	0.11	0.10	ug/m3
o-Xylene	69	10	pptv	0.30	0.043	
2-Chlorotoluene	ND	10	pptv	ND	0.043	ug/m3
			pptv			ug/m3
1,3,5-Trimethylbenzene	13 50	10	pptv	0.065	0.049	ug/m3
1,2,4-Trimethylbenzene	59 ND	10	pptv	0.29	0.049	ug/m3
Benzyl chloride	ND ND	10	pptv	ND ND	0.052	ug/m3
1,3-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND	10	pptv	ND	0.074	ug/m3
1,1,2,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
Naphthalene	ND	10	pptv	ND	0.052	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Onem. Odlary St Environm	Crital Colations		Location	Jii. Waniat Bia	ii wwonipi	an
518235-004 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	240	10	pptv	1.1	0.043	ug/m3
518235-004 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			94	60-140	uç	g/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB05-14D Batch#: 352933 Prep: METHOD

Lab ID: 518235-005 **Sampled:** 10/15/24 12:01 **Analysis:** EPA TO-15 SIM

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.200 **Analyzed:** 10/16/24 14:44

518235-005 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	460	12	pptv	2.3	0.059	ug/m3
Chloromethane	480	120	pptv	1.0	0.25	ug/m3
Freon 114	16	12	pptv	0.11	0.084	ug/m3
Vinyl Chloride	ND	12	pptv	ND	0.031	ug/m3
Bromomethane	22	12	pptv	0.084	0.047	ug/m3
Chloroethane	ND	12	pptv	ND	0.032	ug/m3
Vinyl bromide	ND	12	pptv	ND	0.052	ug/m3
Trichlorofluoromethane	190	12	pptv	1.1	0.067	ug/m3
1,1-Dichloroethene	ND	12	pptv	ND	0.048	ug/m3
Methylene Chloride	220	24	pptv	0.76	0.083	ug/m3
Freon 113	61	12	pptv	0.46	0.092	ug/m3
trans-1,2-Dichloroethene	ND	12	pptv	ND	0.048	ug/m3
1,1-Dichloroethane	ND	12	pptv	ND	0.049	ug/m3
cis-1,2-Dichloroethene	ND	12	pptv	ND	0.048	ug/m3
Chloroform	32	12	pptv	0.16	0.059	ug/m3
1,2-Dichloroethane	15	12	pptv	0.061	0.049	ug/m3
1,1,1-Trichloroethane	ND	12	pptv	ND	0.065	ug/m3
Benzene Control Tetrophismis	1,000	12	pptv	3.2	0.038	ug/m3
Carbon Tetrachloride	73	12 12	pptv	0.46	0.075	ug/m3
1,2-Dichloropropane	ND		pptv	ND	0.055	ug/m3
Bromodichloromethane Trichloroethene	ND ND	12 12	pptv	ND ND	0.080 0.064	ug/m3
	ND ND	12	pptv	ND ND	0.054	ug/m3 ug/m3
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND	12	pptv	ND ND	0.054	ug/m3
1,1,2-Trichloroethane	ND	12	pptv pptv	ND	0.065	ug/m3
Toluene	1,500	12	pptv	5.8	0.005	ug/m3
Dibromochloromethane	1,300 ND	12	pptv	ND	0.10	ug/m3
1,2-Dibromoethane	ND	12	pptv	ND	0.092	ug/m3
Tetrachloroethene	ND	12	pptv	ND	0.081	ug/m3
Chlorobenzene	ND	12	pptv	ND	0.055	ug/m3
Ethylbenzene	59	12	pptv	0.26	0.052	ug/m3
m,p-Xylenes	170	12	pptv	0.73	0.052	ug/m3
Bromoform	ND	12	pptv	ND	0.12	ug/m3
Styrene	30	12	pptv	0.13	0.051	ug/m3
o-Xylene	66	12	pptv	0.29	0.052	ug/m3
2-Chlorotoluene	ND	12	pptv	ND	0.062	ug/m3
1,3,5-Trimethylbenzene	15	12	pptv	0.074	0.059	ug/m3
1,2,4-Trimethylbenzene	59	12	pptv	0.29	0.059	ug/m3
Benzyl chloride	ND	12	pptv	ND	0.062	ug/m3
1,3-Dichlorobenzene	ND	12	pptv	ND	0.072	ug/m3
1,4-Dichlorobenzene	ND	12	pptv	ND	0.072	ug/m3
1,2-Dichlorobenzene	ND	12	pptv	ND	0.072	ug/m3
1,2,4-Trichlorobenzene	ND	12	pptv	ND	0.089	ug/m3
1,1,2,2-Tetrachloroethane	ND	12	pptv	ND	0.082	ug/m3
1,1,1,2-Tetrachloroethane	ND	12	pptv	ND	0.082	ug/m3
Naphthalene	14	12	pptv	0.074	0.063	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Oliciti. Calalyst Environing	nerital Solutions		Localic	Jii. Waiilul Diu	ii wwoinpi	an
518235-005 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	12	pptv	ND	0.13	ug/m3
Xylene (total)	230	12	pptv	1.0	0.052	ug/m3
518235-005 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			95	60-140	uc	a/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB06-14D Batch#: 352933 Prep: METHOD

 Lab ID:
 518235-006
 Sampled:
 10/15/24 11:56
 Analysis:
 EPA TO-15 SIM

 Matrix:
 Air
 Received:
 10/15/24
 Analyst:
 OHD

 Matrix:
 Air
 Received:
 10/15/24

 Diln Fac:
 1.000
 Analyzed:
 10/16/24 15:33

518235-006 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	470	10	pptv	2.3	0.049	ug/m3
Chloromethane	480	100	pptv	1.0	0.21	ug/m3
Freon 114	17	10	pptv	0.12	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	21	10	pptv	0.081	0.039	ug/m3
Chloroethane	17	10	pptv	0.045	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	190	10	pptv	1.1	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	180	20	pptv	0.62	0.069	ug/m3
Freon 113	61	10	pptv	0.46	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	31	10	pptv	0.15	0.049	ug/m3
1,2-Dichloroethane	15	10	pptv	0.062	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	230	10	pptv	0.74	0.032	ug/m3
Carbon Tetrachloride	74	10	pptv	0.47	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Trichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
trans-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Toluene	420	10	pptv	1.6	0.038	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.068	ug/m3
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3
Ethylbenzene	64	10	pptv	0.28	0.043	ug/m3
m,p-Xylenes	170	10	pptv	0.74	0.043	ug/m3
Bromoform	ND	10	pptv	ND	0.10	ug/m3
Styrene	26	10	pptv	0.11	0.043	ug/m3
o-Xylene	66	10	pptv	0.29	0.043	ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
1,3,5-Trimethylbenzene	13	10	pptv	0.065	0.049	ug/m3
1,2,4-Trimethylbenzene	54	10	pptv	0.26	0.049	ug/m3
Benzyl chloride	ND	10	pptv	ND	0.052	ug/m3
1,3-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND	10	pptv	ND	0.074	ug/m3
1,1,2,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
Naphthalene	ND	10	pptv	ND	0.052	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Oliciti. Calalyst Environmenta	li Solutions		Localic	ii. Wantut Dit	ili vvolkp	iaii
518235-006 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	240	10	pptv	1.0	0.043	ug/m3
518235-006 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			96	60-140	ug	g/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB07-14D Batch#: 352933 Prep: METHOD

Lab ID: 518235-007 **Sampled:** 10/15/24 12:06 **Analysis:** EPA TO-15 SIM

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.000 **Analyzed:** 10/16/24 16:22

518235-007 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	460	10	pptv	2.3	0.049	ug/m3
Chloromethane	480	100	pptv	0.99	0.043	ug/m3
Freon 114	17	10	pptv	0.12	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	22	10	pptv	0.085	0.039	ug/m3
Chloroethane	33	10	pptv	0.088	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	190	10	pptv	1.1	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	190	20	pptv	0.67	0.069	ug/m3
Freon 113	60	10	pptv	0.46	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	29	10	pptv	0.14	0.049	ug/m3
1,2-Dichloroethane	15	10	pptv	0.061	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	220	10	pptv	0.72	0.032	ug/m3
Carbon Tetrachloride	73	10	pptv	0.46	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane Triphloromethane	ND ND	10	pptv	ND ND	0.067	ug/m3
Trichloroethene cis-1,3-Dichloropropene	ND ND	10 10	pptv	ND ND	0.054 0.045	ug/m3 ug/m3
trans-1,3-Dichloropropene	ND ND	10	pptv	ND ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv pptv	ND	0.045	ug/m3
Toluene	390	10	pptv	1.5	0.038	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.068	ug/m3
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3
Ethylbenzene	60	10	pptv	0.26	0.043	ug/m3
m,p-Xylenes	160	10	pptv	0.71	0.043	ug/m3
Bromoform	ND	10	pptv	ND	0.10	ug/m3
Styrene	29	10	pptv	0.12	0.043	ug/m3
o-Xylene	65	10	pptv	0.28	0.043	ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
1,3,5-Trimethylbenzene	13	10	pptv	0.065	0.049	ug/m3
1,2,4-Trimethylbenzene	58	10	pptv	0.29	0.049	ug/m3
Benzyl chloride	ND	10	pptv	ND	0.052	ug/m3
1,3-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND	10	pptv	ND	0.074	ug/m3
1,1,2,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
Naphthalene	11	10	pptv	0.059	0.052	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Oliciti. Odlary St Environin	ichtal Colations		Location	ii. Wantat Bia	iii vvoinpi	ian
518235-007 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	230	10	pptv	0.99	0.043	ug/m3
518235-007 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			95	60-140	uç	g/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB08-14D Batch#: 352933 Prep: METHOD

Lab ID: 518235-008 **Sampled:** 10/15/24 12:11 **Analysis:** EPA TO-15 SIM

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.100 **Analyzed:** 10/16/24 17:10

51005 000 Applyto	Analyzeu. 10/			Do!! /8#\	DI /84	
518235-008 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	470	11	pptv	2.3	0.054	ug/m3
Chloromethane Freon 114	490 17	110 11	pptv	1.0 0.12	0.23 0.077	ug/m3
Vinyl Chloride	ND	11	pptv	0.12 ND	0.077	ug/m3
			pptv			ug/m3
Bromomethane	21	11 11	pptv	0.080	0.043	ug/m3
Chloroethane	22 ND	11	pptv	0.058	0.029	ug/m3
Vinyl bromide			pptv	ND	0.048	ug/m3
Trichlorofluoromethane	200	11	pptv	1.1	0.062	ug/m3
1,1-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
Methylene Chloride	210	22	pptv	0.74	0.076	ug/m3
Freon 113	61	11	pptv	0.47	0.084	ug/m3
trans-1,2-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
1,1-Dichloroethane	ND	11	pptv	ND	0.045	ug/m3
cis-1,2-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
Chloroform	28	11	pptv	0.14	0.054	ug/m3
1,2-Dichloroethane	15	11	pptv	0.062	0.045	ug/m3
1,1,1-Trichloroethane	ND	11	pptv	ND	0.060	ug/m3
Benzene	230	11	pptv	0.74	0.035	ug/m3
Carbon Tetrachloride	74	11	pptv	0.47	0.069	ug/m3
1,2-Dichloropropane	ND	11	pptv	ND	0.051	ug/m3
Bromodichloromethane	ND	11	pptv	ND	0.074	ug/m3
Trichloroethene	ND	11	pptv	ND	0.059	ug/m3
cis-1,3-Dichloropropene	ND	11	pptv	ND	0.050	ug/m3
trans-1,3-Dichloropropene	ND	11	pptv	ND	0.050	ug/m3
1,1,2-Trichloroethane	ND	11	pptv	ND	0.060	ug/m3
Toluene	400	11	pptv	1.5	0.041	ug/m3
Dibromochloromethane	ND	11	pptv	ND	0.094	ug/m3
1,2-Dibromoethane	ND	11	pptv	ND	0.085	ug/m3
Tetrachloroethene	ND	11	pptv	ND	0.075	ug/m3
Chlorobenzene	ND	11	pptv	ND	0.051	ug/m3
Ethylbenzene	59	11	pptv	0.26	0.048	ug/m3
m,p-Xylenes	160	11	pptv	0.70	0.048	ug/m3
Bromoform	ND	11	pptv	ND	0.11	ug/m3
Styrene	23	11	pptv	0.099	0.047	ug/m3
o-Xylene	65	11	pptv	0.28	0.048	ug/m3
2-Chlorotoluene	ND	11	pptv	ND	0.057	ug/m3
1,3,5-Trimethylbenzene	12	11	pptv	0.061	0.054	ug/m3
1,2,4-Trimethylbenzene	54	11	pptv	0.27	0.054	ug/m3
Benzyl chloride	ND	11	pptv	ND	0.057	ug/m3
1,3-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,4-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,2-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,2,4-Trichlorobenzene	ND	11	pptv	ND	0.082	ug/m3
1,1,2,2-Tetrachloroethane	ND	11	pptv	ND	0.076	ug/m3
1,1,1,2-Tetrachloroethane	ND	11	pptv	ND	0.076	ug/m3
Naphthalene	ND	11	pptv	ND	0.058	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Onem. Galaryst Environment	i Colutions			Jii. Wamat Dia	ii vvoinpi	un
518235-008 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	11	pptv	ND	0.12	ug/m3
Xylene (total)	230	11	pptv	0.98	0.048	ug/m3
518235-008 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			96	60-140	ug	_J /m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB09-14D Batch#: 352933 Prep: METHOD

 Lab ID:
 518235-009
 Sampled:
 10/15/24 11:05
 Analysis:
 EPA TO-15 SIM

 Matrix:
 Air
 Received:
 10/15/24
 Analyst:
 OHD

Diln Fac: 1.000 **Analyzed:** 10/16/24 17:59

518235-009 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	470	10	pptv	2.3	0.049	ug/m3
Chloromethane	490	100	pptv	1.0	0.21	ug/m3
Freon 114	17	10	pptv	0.12	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	24	10	pptv	0.092	0.039	ug/m3
Chloroethane	16	10	pptv	0.042	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	200	10	pptv	1.1	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	820	20	pptv	2.8	0.069	ug/m3
Freon 113	61	10	pptv	0.47	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	37	10	pptv	0.18	0.049	ug/m3
1,2-Dichloroethane	16	10	pptv	0.063	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	250	10	pptv	0.81	0.032	ug/m3
Carbon Tetrachloride	74	10	pptv	0.47	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Trichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
trans-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Toluene	420	10	pptv	1.6	0.038	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.068	ug/m3
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3
Ethylbenzene	62	10	pptv	0.27	0.043	ug/m3
m,p-Xylenes	180	10	pptv	0.79	0.043	ug/m3
Bromoform	ND 29	10 10	pptv	ND 0.12	0.10 0.043	ug/m3
Styrene o-Xylene	72 72	10	pptv	0.12	0.043	ug/m3 ug/m3
			pptv			<u>-</u>
2-Chlorotoluene 1,3,5-Trimethylbenzene	ND 14	10	pptv	ND ND	0.052	ug/m3
1,2,4-Trimethylbenzene	59	10	pptv pptv	0.068 0.29	0.049	ug/m3 ug/m3
Benzyl chloride	ND	10		ND	0.049	ug/m3
1,3-Dichlorobenzene	ND ND	10	pptv pptv	ND ND	0.052	ug/m3
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2-Dichlorobenzene	ND ND	10	pptv	ND ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND ND	10	pptv	ND ND	0.000	ug/m3
1,1,2,2-Tetrachloroethane	ND ND	10	pptv	ND ND	0.069	ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
Naphthalene	15	10	pptv	0.078	0.059	ug/m3
παριπιαιστισ	10	10	pptv	0.070	0.002	ug/IIIo

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Onem. Oatalyst Environmenta	Coldions		Location	Jii. Waniat Dia	ii wwonipi	an
518235-009 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	250	10	pptv	1.1	0.043	ug/m3
518235-009 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			96	60-140	uç	g/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB10-14D Batch#: 352933 Prep: METHOD

Lab ID: 518235-010 **Sampled:** 10/15/24 11:12 **Analysis:** EPA TO-15 SIM

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.000 **Analyzed:** 10/16/24 18:48

518235-010 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	460	10		2.3	0.049	. ,
Chloromethane	480	100	pptv pptv	2.3 0.98	0.049	ug/m3 ug/m3
Freon 114	17	100	pptv	0.12	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	21	10	pptv	0.083	0.039	ug/m3
Chloroethane	ND	10	pptv	ND	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	190	10	pptv	1.1	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	250	20	pptv	0.85	0.069	ug/m3
Freon 113	60	10	pptv	0.46	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	31	10	pptv	0.15	0.049	ug/m3
1,2-Dichloroethane	18	10	pptv	0.072	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	310	10	pptv	0.99	0.032	ug/m3
Carbon Tetrachloride	73	10	pptv	0.46	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Trichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
trans-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Toluene	350	10	pptv	1.3	0.038	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3
Tetrachloroethene	ND ND	10	pptv	ND ND	0.068	ug/m3
Chlorobenzene Ethylbenzene	100	10 10	pptv	0.45	0.046 0.043	ug/m3
m,p-Xylenes	270	10	pptv pptv	1.2	0.043	ug/m3 ug/m3
Bromoform	ND ND	10	pptv	ND	0.10	ug/m3
Styrene	32	10	pptv	0.13	0.043	ug/m3
o-Xylene	84	10	pptv	0.37	0.043	ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
1,3,5-Trimethylbenzene	28	10	pptv	0.14	0.049	ug/m3
1,2,4-Trimethylbenzene	100	10	pptv	0.50	0.049	ug/m3
Benzyl chloride	ND	10	pptv	ND	0.052	ug/m3
1,3-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND	10	pptv	ND	0.074	ug/m3
1,1,2,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
Naphthalene	26	10	pptv	0.14	0.052	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Cheff. Catalyst Environmental Solutions			Localic	Jii. Waiilul Diu	ii wwoinpi	iaii
518235-010 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	350	10	pptv	1.5	0.043	ug/m3
518235-010 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			94	60-140	uc	g/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB11-14D Batch#: 352933 Prep: METHOD

 Lab ID:
 518235-011
 Sampled:
 10/15/24 11:16
 Analysis:
 EPA TO-15 SIM

 Matrix:
 Air
 Received:
 10/15/24
 Analyst:
 OHD

Diln Fac: 1.000 **Analyzed:** 10/16/24 19:37

518235-011 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	470	10	pptv	2.3	0.049	ug/m3
Chloromethane	490	100	pptv	1.0	0.21	ug/m3
Freon 114	17	10	pptv	0.12	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	23	10	pptv	0.089	0.039	ug/m3
Chloroethane	34	10	pptv	0.089	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	190	10	pptv	1.1	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	160	20	pptv	0.57	0.069	ug/m3
Freon 113	61	10	pptv	0.47	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	29	10	pptv	0.14	0.049	ug/m3
1,2-Dichloroethane	15	10	pptv	0.061	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	240	10	pptv	0.78	0.032	ug/m3
Carbon Tetrachloride	74	10	pptv	0.47	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Trichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
trans-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Toluene	440	10	pptv	1.6	0.038	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.068	ug/m3
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3
Ethylbenzene	61	10	pptv	0.27	0.043	ug/m3
m,p-Xylenes	180	10	pptv	0.78	0.043	ug/m3
Bromoform	ND	10	pptv	ND	0.10	ug/m3
Styrene	31 70	10 10	pptv	0.13 0.31	0.043 0.043	ug/m3
o-Xylene			pptv			ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	15 60	10 10	pptv	0.073 0.30	0.049 0.049	ug/m3 ug/m3
Benzyl chloride	ND	10	pptv	0.30 ND	0.049	ug/m3 ug/m3
1,3-Dichlorobenzene	ND ND	10	pptv	ND ND	0.052	ug/m3 ug/m3
1,4-Dichlorobenzene		10	pptv	ND	0.060	
1,2-Dichlorobenzene	ND ND	10	pptv	ND ND	0.060	ug/m3 ug/m3
1,2,4-Trichlorobenzene	ND ND	10	pptv	ND ND	0.060	ug/m3 ug/m3
1,1,2,2-Tetrachloroethane	ND ND	10	pptv pptv	ND ND	0.074	ug/m3
1,1,1,2-Tetrachloroethane	ND	10		ND	0.069	ug/m3
Naphthalene	16	10	pptv	0.086	0.059	ug/m3
naphthalene	10	10	pptv	0.000	0.052	ug/IIIS

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Olient. Catalyst Environmental Colutions			Location. Wallut Didli Workplan			
518235-011 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	250	10	pptv	1.1	0.043	ug/m3
518235-011 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			97	60-140	uc	a/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB12-14D Batch#: 352933 Prep: METHOD

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.000 **Analyzed:** 10/16/24 20:25

518235-012 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	460	10	pptv	2.3	0.049	ug/m3
Chloromethane	490	100	pptv	1.0	0.21	ug/m3
Freon 114	17	10	pptv	0.12	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	21	10	pptv	0.081	0.039	ug/m3
Chloroethane	39	10	pptv	0.10	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	190	10	pptv	1.1	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	160	20	pptv	0.57	0.069	ug/m3
Freon 113	61	10	pptv	0.46	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	29	10	pptv	0.14	0.049	ug/m3
1,2-Dichloroethane	15	10	pptv	0.062	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	270	10	pptv	0.85	0.032	ug/m3
Carbon Tetrachloride	73	10	pptv	0.46	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Trichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND	10 10	pptv	ND ND	0.045 0.045	ug/m3
1,1,2-Trichloroethane	ND ND	10	pptv	ND ND	0.045	ug/m3 ug/m3
Toluene	490	10	pptv pptv	1.9	0.033	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.035	ug/m3
1,2-Dibromoethane	ND ND	10	pptv	ND	0.003	ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.068	ug/m3
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3
Ethylbenzene	68	10	pptv	0.29	0.043	ug/m3
m,p-Xylenes	190	10	pptv	0.83	0.043	ug/m3
Bromoform	ND	10	pptv	ND	0.10	ug/m3
Styrene	32	10	pptv	0.14	0.043	ug/m3
o-Xylene	75	10	pptv	0.33	0.043	ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
1,3,5-Trimethylbenzene	15	10	pptv	0.074	0.049	ug/m3
1,2,4-Trimethylbenzene	64	10	pptv	0.32	0.049	ug/m3
Benzyl chloride	ND	10	pptv	ND	0.052	ug/m3
1,3-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND	10	pptv	ND	0.074	ug/m3
1,1,2,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
Naphthalene	11	10	pptv	0.059	0.052	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Onem. Catalyst Environmen	ital Colutions		Localic	ii. Wamat bit	an wone	ιαπ
518235-012 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	270	10	pptv	1.2	0.043	ug/m3
518235-012 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			97	60-140	u(g/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB13-14D Batch#: 352933 Prep: METHOD

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.100 **Analyzed:** 10/16/24 21:14

518235-013 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	460	11	pptv	2.3	0.054	ug/m3
Chloromethane	490	110	pptv	1.0	0.23	ug/m3
Freon 114	16	11	pptv	0.11	0.077	ug/m3
Vinyl Chloride	ND	11	pptv	ND	0.028	ug/m3
Bromomethane	21	11	pptv	0.083	0.043	ug/m3
Chloroethane	ND	11	pptv	ND	0.029	ug/m3
Vinyl bromide	ND	11	pptv	ND	0.048	ug/m3
Trichlorofluoromethane	190	11	pptv	1.1	0.062	ug/m3
1,1-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
Methylene Chloride	170	22	pptv	0.60	0.076	ug/m3
Freon 113	59	11	pptv	0.46	0.084	ug/m3
trans-1,2-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
1,1-Dichloroethane	ND	11	pptv	ND	0.045	ug/m3
cis-1,2-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
Chloroform	35	11	pptv	0.17	0.054	ug/m3
1,2-Dichloroethane	16	11	pptv	0.065	0.045	ug/m3
1,1,1-Trichloroethane	ND	11	pptv	ND	0.060	ug/m3
Benzene	280	11	pptv	0.89	0.035	ug/m3
Carbon Tetrachloride	72	11	pptv	0.46	0.069	ug/m3
1,2-Dichloropropane	ND	11	pptv	ND	0.051	ug/m3
Bromodichloromethane	ND	11	pptv	ND	0.074	ug/m3
Trichloroethene	ND	11	pptv	ND	0.059	ug/m3
cis-1,3-Dichloropropene	ND	11	pptv	ND	0.050	ug/m3
trans-1,3-Dichloropropene	ND	11	pptv	ND	0.050	ug/m3
1,1,2-Trichloroethane	ND	11	pptv	ND	0.060	ug/m3
Toluene	530	11	pptv	2.0	0.041	ug/m3
Dibromochloromethane	ND	11	pptv	ND	0.094	ug/m3
1,2-Dibromoethane	ND	11	pptv	ND	0.085	ug/m3
Tetrachloroethene	12	11	pptv	0.080	0.075	ug/m3
Chlorobenzene	ND	11	pptv	ND	0.051	ug/m3
Ethylbenzene	72	11	pptv	0.31	0.048	ug/m3
m,p-Xylenes	220	11	pptv	0.94	0.048	ug/m3
Bromoform	ND	11	pptv	ND	0.11	ug/m3
Styrene	76	11	pptv	0.32	0.047	ug/m3
o-Xylene	86 ND	11	pptv	0.37	0.048	ug/m3
2-Chlorotoluene	ND	11	pptv	ND	0.057	ug/m3
1,3,5-Trimethylbenzene	17 70	11	pptv	0.085	0.054	ug/m3
1,2,4-Trimethylbenzene	72	11	pptv	0.35	0.054	ug/m3
Benzyl chloride	ND ND	11	pptv	ND ND	0.057	ug/m3
1,3-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,4-Dichlorobenzene	ND ND	11	pptv	ND	0.066	ug/m3
1,2-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,2,4-Trichlorobenzene	ND	11	pptv	ND	0.082	ug/m3
1,1,2,2-Tetrachloroethane	ND	11	pptv	ND	0.076	ug/m3
1,1,1,2-Tetrachloroethane	ND	11	pptv	ND	0.076	ug/m3
Naphthalene	23	11	pptv	0.12	0.058	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Cheft. Catalyst Environmental Solutions		Localic	ion. Walliut blull Workplan			
518235-013 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	11	pptv	ND	0.12	ug/m3
Xylene (total)	300	11	pptv	1.3	0.048	ug/m3
518235-013 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			97	60-140	uo	ı/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB14-14D Batch#: 352933 Prep: METHOD

Lab ID: 518235-014 **Sampled:** 10/15/24 11:28 **Analysis:** EPA TO-15 SIM

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.000 **Analyzed:** 10/16/24 22:03

518235-014 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	460	10	pptv	2.3	0.049	ug/m3
Chloromethane	490	100	pptv	1.0	0.21	ug/m3
Freon 114	16	10	pptv	0.11	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	22	10	pptv	0.085	0.039	ug/m3
Chloroethane	ND	10	pptv	ND	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	190	10	pptv	1.1	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	170	20	pptv	0.59	0.069	ug/m3
Freon 113	60	10	pptv	0.46	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	27	10	pptv	0.13	0.049	ug/m3
1,2-Dichloroethane	16	10	pptv	0.063	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	240	10	pptv	0.78	0.032	ug/m3
Carbon Tetrachloride	73	10	pptv	0.46	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Trichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
trans-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Toluene	350 ND	10 10	pptv	1.3 ND	0.038 0.085	ug/m3
Dibromochloromethane 1,2-Dibromoethane	ND ND	10	pptv	ND ND	0.063	ug/m3 ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.077	ug/m3
Chlorobenzene	ND ND	10	pptv pptv	ND ND	0.066	ug/m3
Ethylbenzene	60	10	pptv	0.26	0.043	ug/m3
m,p-Xylenes	170	10	pptv	0.75	0.043	ug/m3
Bromoform	ND	10	pptv	ND	0.10	ug/m3
Styrene	20	10	pptv	0.086	0.043	ug/m3
o-Xylene	68	10	pptv	0.30	0.043	ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
1,3,5-Trimethylbenzene	14	10	pptv	0.067	0.049	ug/m3
1,2,4-Trimethylbenzene	55	10	pptv	0.27	0.049	ug/m3
Benzyl chloride	ND	10	pptv	ND	0.052	ug/m3
1,3-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND	10	pptv	ND	0.074	ug/m3
1,1,2,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
Naphthalene	11	10	pptv	0.057	0.052	ug/m3
						-

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Onem. Oatalyst Environmental	Colutions		Location	Jii. Wamat Bia	ii wwoinpi	an
518235-014 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	240	10	pptv	1.1	0.043	ug/m3
518235-014 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			97	60-140	uç	g/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB17-14D Batch#: 352933 Prep: METHOD

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.100 **Analyzed:** 10/16/24 22:52

Freon 12	nits (M)
Chloromethane 480 110 pptv 1.0 0.23 up Freon 114 16 11 pptv ND 0.07 up Vnyl Chloride ND 11 pptv ND 0.028 up Bromomethane 22 11 pptv 0.084 0.043 up Chloroethane 12 11 pptv ND 0.048 up Vnyl bromide ND 11 pptv ND 0.048 up Vnyl bromide ND 11 pptv ND 0.048 up Vnyl bromide ND 11 pptv ND 0.048 up Vnyl promide ND 11 pptv ND 0.048 up Vnyl bromoder ND 11 pptv ND 0.046 up 1,1-Dichloroethane ND 11 pptv ND 0.044 up 1,2-Dichloroethane 15 11 pptv N	int3 (iii) ig/m3
Freon 114 16 11 pptv 0.11 0.077 up Viny Chloride ND 11 pptv ND 0.028 0.043 0.08 Bromomethane 22 11 pptv 0.032 0.029 0.02 Chloroethane 12 11 pptv ND 0.032 0.023 0.02 Vinyl bromide ND 11 pptv ND 0.048 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.03 0.07 0.02 0.02 0.03 0.03 0.03 0.03 0.03	ıg/m3
Vinyl Chloride ND 11 pptv ND 0.028 Regression Bromomethane 22 11 pptv 0.084 0.043 0.029 Chloroethane 12 11 pptv ND 0.048 0.029 Vinyl bromide ND 11 pptv ND 0.048 0.029 Vinyl bromide ND 11 pptv ND 0.048 0.02 Trichloroethane ND 11 pptv ND 0.048 0.02 Methylene Chloride 150 22 pptv 0.53 0.076 0.02 Freon 113 60 11 pptv 0.46 0.084 0.06 Trans-1-2-Dichloroethane ND 11 pptv ND 0.044 0.06 1,1-1-Trichloroethane ND 11 pptv ND 0.044 0.06 1,2-Dichloroethane 15 11 pptv ND 0.060 0.06 1,2-Dichloroethane <	ıg/m3
Bromomethane 22	ıg/m3
Chloroethane 12 11 pptv 0.032 0.029 up Vinyl bromide ND 11 pptv ND 0.048 up Trichlorofluoromethane 190 11 pptv 1.1 0.062 up 1,1-Dichloroethene ND 11 pptv ND 0.044 up Freon 113 60 11 pptv ND 0.053 0.076 up Freon 113 60 11 pptv ND 0.044 up trans-1,2-Dichloroethene ND 11 pptv ND 0.044 up cis-1,2-Dichloroethane ND 11 pptv ND 0.045 up cis-1,2-Dichloroethane 15 11 pptv ND 0.045 up cls-1,2-Dichloroethane 15 11 pptv ND 0.062 0.045 up cl-1,2-Dichloroethane ND 11 pptv ND 0.062 0.045 up	ıg/m3
Vinyl bromide ND 11 pptv ND 0.048 us Trichlorofluoromethane 190 11 pptv ND 0.048 us In-Dichloroethene ND 11 pptv ND 0.044 us Methylene Chloride 150 22 pptv 0.53 0.076 us Freon 113 60 11 pptv ND 0.044 us trans-1,2-Dichloroethane ND 11 pptv ND 0.044 us strans-1,2-Dichloroethane ND 11 pptv ND 0.044 us cis-1,2-Dichloroethane 15 11 pptv ND 0.044 us 1,2-Dichloroethane 15 11 pptv ND 0.044 us 1,2-Dichloroethane 15 11 pptv ND 0.046 us 1,1-1-Trichloroethane ND 11 pptv ND 0.050 us 1,2-Dichloroptopane	ıg/m3
1,1-Dichloroethene ND 11 pptv ND 0.044 Ug Methylene Chloride 150 22 pptv 0.53 0.076 Ug Freon 113 60 11 pptv 0.46 0.084 Ug trans-1,2-Dichloroethene ND 11 pptv ND 0.044 Ug cls-1,2-Dichloroethene ND 11 pptv ND 0.045 Ug Chloroform 29 11 pptv ND 0.045 Ug 1,2-Dichloroethane 15 11 pptv 0.062 0.045 Ug 1,1-1-Trichloroethane ND 11 pptv ND 0.062 0.045 Ug 1,2-Dichloroptane ND 11 pptv ND 0.050 Ug 2,2-Dichloroptane ND 11 pptv ND 0.060 Ug 2,1-2-Dichloroptane ND 11 pptv ND 0.051 Ug 2,1-2-Dichloropta	ıg/m3
Methylene Chloride 150 22 pptv 0.53 0.076 Deck Freon 113 60 11 pptv 0.46 0.84 up trans-1,2-Dichloroethene ND 11 pptv ND 0.044 up 1,1-Dichloroethane ND 11 pptv ND 0.045 up cis-1,2-Dichloroethane ND 11 pptv ND 0.045 up Chloroform 29 11 pptv 0.062 0.045 up 1,1-1-Tirchloroethane ND 11 pptv 0.062 0.045 up 1,1,1-Trichloroethane ND 11 pptv 0.062 0.045 up 1,1,1-Trichloroethane ND 11 pptv 0.082 0.035 up Carbon Tetrachloride 72 11 pptv 0.046 0.060 up 1,2-Dichloropropane ND 11 pptv ND 0.051 up 1.05 0.051	ıg/m3
Freon 113 60 11 pptv 0.46 0.084 up trans-1,2-Dichloroethene 1,1-Dichloroethene ND 11 pptv ND 0.044 up to ND 0.045 up to ND 0.044 up to ND 0.044 up to ND 0.045 up to ND 0.045 up to ND 0.045 up to ND 0.046 0.051 up to ND 0.062 0.045 up to ND 0.060 up to ND 0.051 up to ND	ıg/m3
trans-1,2-Dichloroethene ND 11 pptv ND 0.044 up 1,1-Dichloroethane ND 11 pptv ND 0.045 up cis-1,2-Dichloroethene ND 11 pptv ND 0.044 up Chloroform 29 11 pptv 0.14 0.054 up 1,2-Dichloroethane 15 11 pptv 0.062 0.045 up 1,1-Trichloroethane ND 11 pptv ND 0.060 up Benzene 260 11 pptv 0.46 0.069 up Carbon Tetrachloride 72 11 pptv 0.46 0.069 up 1,2-Dichloropropane ND 11 pptv ND 0.051 up Bromodichloromethane ND 11 pptv ND 0.074 up ris-1,3-Dichloropropene ND 11 pptv ND 0.050 up cis-1,3-Dichloropropene	ıg/m3
1,1-Dichloroethane ND 11 pptv ND 0.045 occis-1,2-Dichloroethene Chloroform 29 11 pptv 0.14 0.054 occidented 1,2-Dichloroethane 15 11 pptv 0.062 0.045 occidented 1,1,1-Trichloroethane ND 11 pptv ND 0.060 occidented Benzene 260 11 pptv 0.46 0.069 occidented Carbon Tetrachloride 72 11 pptv 0.46 0.069 occidented 1,2-Dichloropropane ND 11 pptv ND 0.051 occidented Bromodichloromethane ND 11 pptv ND 0.051 occidented 1,2-Tichloroptopene ND 11 pptv ND 0.050 occidented 1,1,2-Tichloroptopane ND 11 pptv ND 0.050 occidented 1,1,2-Tichloroptopane ND 11 pptv ND 0.050	ıg/m3
cis-1,2-Dichloroethene ND 11 pptv ND 0.044 uppt Unit Chloroform 29 11 pptv 0.14 0.054 uppt Unit 1,2-Dichloroethane 15 11 pptv 0.062 0.045 uppt Unit 1,1-1-Tichloroethane ND 11 pptv ND 0.060 uppt Unit Benzene 260 11 pptv 0.46 0.069 uppt Unit Carbon Tetrachloride 72 11 pptv ND 0.051 uppt Unit Carbon Tetrachloride 72 11 pptv ND 0.051 uppt Unit 1,2-Dichloroppane ND 11 pptv ND 0.051 uppt Unit Bromodichloromethane ND 11 pptv ND 0.059 uppt Unit cis-1,3-Dichloropropene ND 11 pptv ND 0.050 uppt Unit cis-1,3-Dichloropropene ND 11 pptv ND 0.050 up	ıg/m3
Chloroform 29 11 pptv 0.14 0.055 0.052 0.054 0.055 0.052 0.055 0.052 0.055 0.052 0.055 0.052 0.055 0.052 0.055 0.052 0.055 0.052 0.055 0.052 0.055 0.055 0.052 0.055 0.055 0.052 0.055 0.	ıg/m3
1,2-Dichloroethane 15 11 pptv 0.062 0.045 0.05 1,1,1-Trichloroethane ND 11 pptv ND 0.060 ug Benzene 260 11 pptv 0.82 0.035 ug Carbon Tetrachloride 72 11 pptv 0.46 0.069 ug 1,2-Dichloropropane ND 11 pptv ND 0.051 ug Bromodichloromethane ND 11 pptv ND 0.051 ug Bromodichloropropane ND 11 pptv ND 0.074 ug cis-1,3-Dichloropropene ND 11 pptv ND 0.050 ug trans-1,3-Dichloropropene ND 11 pptv ND 0.050 ug 1,1,2-Trichloroethane ND 11 pptv ND 0.050 ug 1,1,2-Tichloroethane ND 11 pptv ND 0.050 ug 1,2-Dibromoethane	ıg/m3
1,1,1-Trichloroethane ND 11 pptv ND 0.060 Quality Benzene 260 11 pptv 0.82 0.035 Ug Carbon Tetrachloride 72 11 pptv 0.46 0.069 Ug 1,2-Dichloropropane ND 11 pptv ND 0.051 Ug Bromodichloromethane ND 11 pptv ND 0.074 Ug Trichloroethane ND 11 pptv ND 0.059 Ug cis-1,3-Dichloropropene ND 11 pptv ND 0.050 Ug trans-1,3-Dichloropropene ND 11 pptv ND 0.050 Ug 1,1,2-Trichloroethane ND 11 pptv ND 0.050 Ug 1,1,2-Trichloroethane ND 11 pptv ND 0.060 Ug 1,2-Dibromoethane ND 11 pptv ND 0.094 Ug 1,2-Dibromoethane	ıg/m3
Benzene 260 11 pptv 0.82 0.035 up Carbon Tetrachloride 72 11 pptv 0.46 0.069 up 1,2-Dichloropropane ND 11 pptv ND 0.051 up Bromodichloromethane ND 11 pptv ND 0.051 up Trichloroethene ND 11 pptv ND 0.059 up cis-1,3-Dichloropropene ND 11 pptv ND 0.050 up trans-1,3-Dichloropropene ND 11 pptv ND 0.050 up 1,1,2-Trichloroethane ND 11 pptv ND 0.050 up 1,1,2-Trichloroethane ND 11 pptv ND 0.060 up 1,2-Dibromoethane ND 11 pptv ND 0.094 up 1,2-Dibromoethane ND 11 pptv ND 0.085 up Chlorobenzene	ıg/m3
Carbon Tetrachloride 72 11 pptv 0.46 0.069 up 1,2-Dichloropropane ND 11 pptv ND 0.051 up Bromodichloromethane ND 11 pptv ND 0.074 up Trichloroethene ND 11 pptv ND 0.059 up cis-1,3-Dichloropropene ND 11 pptv ND 0.050 up trans-1,3-Dichloropropene ND 11 pptv ND 0.050 up 1,1,2-Trichloroethane ND 11 pptv ND 0.060 up 1,1,2-Trichloroethane ND 11 pptv ND 0.060 up Toluene 450 11 pptv ND 0.060 up 1,2-Dibromoethane ND 11 pptv ND 0.094 up Tetrachloroethene ND 11 pptv ND 0.085 up Tetrachloroethene <t< td=""><td>ıg/m3</td></t<>	ıg/m3
1,2-Dichloropropane ND 11 pptv ND 0.051 up Bromodichloromethane ND 11 pptv ND 0.074 up Trichloroethene ND 11 pptv ND 0.059 up cis-1,3-Dichloropropene ND 11 pptv ND 0.050 up trans-1,3-Dichloropropene ND 11 pptv ND 0.050 up 1,1,2-Trichloroethane ND 11 pptv ND 0.060 up Toluene 450 11 pptv ND 0.060 up Dibromochloromethane ND 11 pptv ND 0.041 up 1,2-Dibromoethane ND 11 pptv ND 0.085 up 1,2-Dibromoethane ND 11 pptv ND 0.085 up 1,2-Dibromoethane ND 11 pptv ND 0.075 up Chlorobenzene ND	ıg/m3
Bromodichloromethane ND 11 pptv ND 0.074 up Trichloroethene ND 11 pptv ND 0.059 up cis-1,3-Dichloropropene ND 11 pptv ND 0.050 up trans-1,3-Dichloropropene ND 11 pptv ND 0.050 up 1,1,2-Trichloroethane ND 11 pptv ND 0.060 up Toluene 450 11 pptv ND 0.041 up Dibromochloromethane ND 11 pptv ND 0.094 up 1,2-Dibromoethane ND 11 pptv ND 0.085 up Tetrachloroethane ND 11 pptv ND 0.085 up Chlorobenzene ND 11 pptv ND 0.075 up Ethylbenzene 69 11 pptv 0.30 0.048 up m,p-Xylenes 200 <t< td=""><td>ıg/m3</td></t<>	ıg/m3
Trichloroethene ND 11 pptv ND 0.059 ug cis-1,3-Dichloropropene ND 11 pptv ND 0.050 ug trans-1,3-Dichloropropene ND 11 pptv ND 0.050 ug 1,1,2-Trichloroethane ND 11 pptv ND 0.060 ug Toluene 450 11 pptv ND 0.041 ug Dibromochloromethane ND 11 pptv ND 0.094 ug 1,2-Dibromoethane ND 11 pptv ND 0.094 ug Tetrachloroethene ND 11 pptv ND 0.085 ug Tetrachlorobenzene ND 11 pptv ND 0.075 ug Ethylbenzene 69 11 pptv ND 0.048 ug m,p-Xylenes 200 11 pptv ND 0.11 ug Styrene 30 11	ıg/m3
cis-1,3-Dichloropropene ND 11 pptv ND 0.050 ug trans-1,3-Dichloropropene ND 11 pptv ND 0.050 ug 1,1,2-Trichloroethane ND 11 pptv ND 0.060 ug Toluene 450 11 pptv ND 0.041 ug Dibromochloromethane ND 11 pptv ND 0.094 ug 1,2-Dibromoethane ND 11 pptv ND 0.085 ug 1,2-Dibromoethane ND 11 pptv ND 0.075 ug 1,2-Dibromoethane ND 11 pptv ND 0.048 ug 1,2-Education 1,2-Dibromo	ıg/m3
trans-1,3-Dichloropropene ND 11 pptv ND 0.050 ut 1,1,2-Trichloroethane ND 11 pptv ND 0.060 ut Toluene 450 11 pptv ND 0.041 ut Dibromochloromethane ND 11 pptv ND 0.094 ut 1,2-Dibromoethane ND 11 pptv ND 0.085 ut Tetrachloroethane ND 11 pptv ND 0.085 ut Chlorobenzene ND 11 pptv ND 0.075 ut Ethylbenzene 69 11 pptv ND 0.048 ut mp-Xylenes 200 11 pptv ND 0.11 ut Bromoform ND 11 pptv ND 0.11 ut Styrene 30 11 pptv ND 0.13 0.047 ut c-Xylene 81 11	ıg/m3
1,1,2-Trichloroethane ND 11 pptv ND 0.060 ug Toluene 450 11 pptv 1.7 0.041 ug Dibromochloromethane ND 11 pptv ND 0.094 ug 1,2-Dibromoethane ND 11 pptv ND 0.085 ug 1,2-Dibromoethane ND 11 pptv ND 0.085 ug 1,2-Dibromoethane ND 11 pptv ND 0.085 ug 1,2-Dibromoethane ND 11 pptv ND 0.075 ug 1,2-Dibromoethane ND 11 pptv ND 0.051 ug 1,2-Dibromoethane ND 11 pptv ND 0.048 ug 1,2-Dibromoethane ND 11 pptv ND 0.048 ug 1,2-A-Trimethylbenzene 17 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND	ıg/m3
Toluene 450 11 pptv 1.7 0.041 upptr Dibromochloromethane ND 11 pptv ND 0.094 upptr 1,2-Dibromoethane ND 11 pptv ND 0.085 upptr Tetrachloroethene ND 11 pptv ND 0.075 upptr Chlorobenzene ND 11 pptv ND 0.051 upptr Ethylbenzene 69 11 pptv 0.30 0.048 upptr Bromoform ND 11 pptv ND 0.11 upptr Styrene 30 11 pptv 0.13 0.047 upptr 2-Chlorotoluene ND 11 pptv ND 0.057 upptr 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 upptr 1,2,4-Trimethylbenzene 67 11 pptv ND 0.057 upptr 1,3-Dichlorobenzene ND	ıg/m3
Dibromochloromethane ND 11 pptv ND 0.094 ug 1,2-Dibromoethane ND 11 pptv ND 0.085 ug Tetrachloroethene ND 11 pptv ND 0.075 ug Chlorobenzene ND 11 pptv ND 0.051 ug Ethylbenzene 69 11 pptv 0.30 0.048 ug m,p-Xylenes 200 11 pptv ND 0.11 ug Styrene 30 11 pptv ND 0.11 ug c-Chlorotoluene 81 11 pptv ND 0.048 ug 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv ND 0.057 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11	ıg/m3 ıg/m3
1,2-Dibromoethane ND 11 pptv ND 0.085 ug Tetrachloroethene ND 11 pptv ND 0.075 ug Chlorobenzene ND 11 pptv ND 0.051 ug Ethylbenzene 69 11 pptv 0.30 0.048 ug m,p-Xylenes 200 11 pptv ND 0.11 ug Styrene 30 11 pptv ND 0.11 ug o-Xylene 81 11 pptv 0.35 0.048 ug 2-Chlorotoluene ND 11 pptv ND 0.057 ug 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv ND 0.057 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 <td< td=""><td>ıg/m3</td></td<>	ıg/m3
Tetrachloroethene ND 11 pptv ND 0.075 ug Chlorobenzene ND 11 pptv ND 0.051 ug Ethylbenzene 69 11 pptv 0.30 0.048 ug m,p-Xylenes 200 11 pptv ND 0.048 ug Bromoform ND 11 pptv ND 0.11 ug Styrene 30 11 pptv 0.35 0.048 ug 2-Chlorotoluene ND 11 pptv ND 0.057 ug 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv ND 0.057 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.057 ug	ıg/m3
Chlorobenzene ND 11 pptv ND 0.051 ug Ethylbenzene 69 11 pptv 0.30 0.048 ug m,p-Xylenes 200 11 pptv 0.89 0.048 ug Bromoform ND 11 pptv ND 0.11 ug Styrene 30 11 pptv 0.13 0.047 ug c-Xylene 81 11 pptv 0.35 0.048 ug 2-Chlorotoluene ND 11 pptv ND 0.057 ug 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv ND 0.057 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.057 ug	ig/m3
Ethylbenzene 69 11 pptv 0.30 0.048 ug m,p-Xylenes 200 11 pptv 0.89 0.048 ug Bromoform ND 11 pptv ND 0.11 ug Styrene 30 11 pptv 0.13 0.047 ug o-Xylene 81 11 pptv 0.35 0.048 ug 2-Chlorotoluene ND 11 pptv ND 0.057 ug 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv 0.33 0.054 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.066 ug	ıg/m3
m,p-Xylenes 200 11 pptv 0.89 0.048 ug Bromoform ND 11 pptv ND 0.11 ug Styrene 30 11 pptv 0.13 0.047 ug o-Xylene 81 11 pptv 0.35 0.048 ug 2-Chlorotoluene ND 11 pptv ND 0.057 ug 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv 0.33 0.054 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.057 ug	ıg/m3
Bromoform ND 11 pptv ND 0.11 ug Styrene 30 11 pptv 0.13 0.047 ug o-Xylene 81 11 pptv 0.35 0.048 ug 2-Chlorotoluene ND 11 pptv ND 0.057 ug 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv 0.33 0.054 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.066 ug	ıg/m3
Styrene 30 11 pptv 0.13 0.047 ug o-Xylene 81 11 pptv 0.35 0.048 ug 2-Chlorotoluene ND 11 pptv ND 0.057 ug 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv 0.33 0.054 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.066 ug	ıg/m3
o-Xylene 81 11 pptv 0.35 0.048 ug 2-Chlorotoluene ND 11 pptv ND 0.057 ug 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv 0.33 0.054 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.066 ug	ıg/m3
2-Chlorotoluene ND 11 pptv ND 0.057 ug 1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv 0.33 0.054 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.066 ug	ıg/m3
1,3,5-Trimethylbenzene 17 11 pptv 0.085 0.054 ug 1,2,4-Trimethylbenzene 67 11 pptv 0.33 0.054 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.066 ug	ıg/m3
1,2,4-Trimethylbenzene 67 11 pptv 0.33 0.054 ug Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.066 ug	ıg/m3
Benzyl chloride ND 11 pptv ND 0.057 ug 1,3-Dichlorobenzene ND 11 pptv ND 0.066 ug	ıg/m3
1,3-Dichlorobenzene ND 11 pptv ND 0.066 ug	ıg/m3
	ıg/m3
1,4-Dichlorobenzene ND 11 pptv ND 0.066 ug	ıg/m3
• • • • • • • • • • • • • • • • • • • •	ıg/m3
•••	ıg/m3
	ıg/m3
1,1,1,2-Tetrachloroethane ND 11 pptv ND 0.076 ug	ıg/m3
Naphthalene 14 11 pptv 0.072 0.058 ug	ıg/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Cheff. Catalyst Environmental Solutions			Localic	ii. Walilul biu	ii wwoinpi	an
518235-015 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	11	pptv	ND	0.12	ug/m3
Xylene (total)	290	11	pptv	1.2	0.048	ug/m3
518235-015 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			97	60-140	uc	a/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB18-14D Batch#: 352933 Prep: METHOD

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.200 **Analyzed:** 10/16/24 23:40

518235-016 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	480	12	pptv	2.4	0.059	ug/m3
Chloromethane	510	120	pptv	1.1	0.25	ug/m3
Freon 114	17	12	pptv	0.12	0.084	ug/m3
Vinyl Chloride	ND	12	pptv	ND	0.031	ug/m3
Bromomethane	28	12	pptv	0.11	0.047	ug/m3
Chloroethane	13	12	pptv	0.035	0.032	ug/m3
Vinyl bromide	ND	12	pptv	ND	0.052	ug/m3
Trichlorofluoromethane	200	12	pptv	1.1	0.067	ug/m3
1,1-Dichloroethene	ND	12	pptv	ND	0.048	ug/m3
Methylene Chloride	160	24	pptv	0.56	0.083	ug/m3
Freon 113	62	12	pptv	0.47	0.092	ug/m3
trans-1,2-Dichloroethene	ND	12	pptv	ND	0.048	ug/m3
1,1-Dichloroethane	ND	12	pptv	ND	0.049	ug/m3
cis-1,2-Dichloroethene	ND	12	pptv	ND	0.048	ug/m3
Chloroform	29	12	pptv	0.14	0.059	ug/m3
1,2-Dichloroethane	15	12	pptv	0.062	0.049	ug/m3
1,1,1-Trichloroethane	ND	12	pptv	ND	0.065	ug/m3
Benzene	250	12	pptv	0.79	0.038	ug/m3
Carbon Tetrachloride	75	12	pptv	0.47	0.075	ug/m3
1,2-Dichloropropane	ND	12	pptv	ND	0.055	ug/m3
Bromodichloromethane	ND	12	pptv	ND	0.080	ug/m3
Trichloroethene	ND	12	pptv	ND	0.064	ug/m3
cis-1,3-Dichloropropene	ND	12	pptv	ND	0.054	ug/m3
trans-1,3-Dichloropropene	ND	12	pptv	ND	0.054	ug/m3
1,1,2-Trichloroethane	ND	12	pptv	ND	0.065	ug/m3
Toluene	440	12	pptv	1.7	0.045	ug/m3
Dibromochloromethane	ND	12	pptv	ND	0.10	ug/m3
1,2-Dibromoethane	ND	12	pptv	ND	0.092	ug/m3
Tetrachloroethene	ND	12	pptv	ND	0.081	ug/m3
Chlorobenzene	ND	12	pptv	ND	0.055	ug/m3
Ethylbenzene	68	12	pptv	0.30	0.052	ug/m3
m,p-Xylenes	200	12	pptv	0.88	0.052	ug/m3
Bromoform	ND	12	pptv	ND	0.12	ug/m3
Styrene	31	12	pptv	0.13	0.051	ug/m3
o-Xylene	81 ND	12	pptv	0.35	0.052	ug/m3
2-Chlorotoluene	ND	12	pptv	ND	0.062	ug/m3
1,3,5-Trimethylbenzene	22	12	pptv	0.11	0.059	ug/m3
1,2,4-Trimethylbenzene	89 ND	12	pptv	0.44	0.059 0.062	ug/m3
Benzyl chloride	ND ND	12 12	pptv	ND ND	0.062	ug/m3
1,3-Dichlorobenzene			pptv			ug/m3
1,4-Dichlorobenzene	ND ND	12 12	pptv	ND ND	0.072 0.072	ug/m3
1,2-Dichlorobenzene	ND ND	12	pptv	ND ND	0.072	ug/m3 ug/m3
1,2,4-Trichlorobenzene 1,1,2,2-Tetrachloroethane	ND ND	12	pptv	ND ND	0.089	ug/m3 ug/m3
1,1,2,2-Tetrachloroethane	ND		pptv	ND ND	0.082	
	ND 14	12 12	pptv			ug/m3
Naphthalene	14	12	pptv	0.073	0.063	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Olient. Oalaryst Environmenta	ii Oolulloiis		Localic	ii. Wantut Dit	an wonkp	iaii
518235-016 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	12	pptv	ND	0.13	ug/m3
Xylene (total)	280	12	pptv	1.2	0.052	ug/m3
518235-016 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			95	60-140	ug	g/m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB19-14D Batch#: 352933 Prep: METHOD

Lab ID: 518235-017 **Sampled:** 10/15/24 14:44 **Analysis:** EPA TO-15 SIM

Matrix: Air Received: 10/15/24 Analyst: OHD

Diln Fac: 1.100 **Analyzed:** 10/17/24 00:29

518235-017 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	460	11	pptv	2.3	0.054	ug/m3
Chloromethane	500	110	pptv	1.0	0.23	ug/m3
Freon 114	16	11	pptv	0.11	0.077	ug/m3
Vinyl Chloride	ND	11	pptv	ND	0.028	ug/m3
Bromomethane	21	11	pptv	0.080	0.043	ug/m3
Chloroethane	26	11	pptv	0.069	0.029	ug/m3
Vinyl bromide	ND	11	pptv	ND	0.048	ug/m3
Trichlorofluoromethane	190	11	pptv	1.1	0.062	ug/m3
1,1-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
Methylene Chloride	140	22	pptv	0.50	0.076	ug/m3
Freon 113	59	11	pptv	0.45	0.084	ug/m3
trans-1,2-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
1,1-Dichloroethane	ND	11	pptv	ND	0.045	ug/m3
cis-1,2-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
Chloroform	27	11	pptv	0.13	0.054	ug/m3
1,2-Dichloroethane	17	11	pptv	0.067	0.045	ug/m3
1,1,1-Trichloroethane	ND	11	pptv	ND	0.060	ug/m3
Benzene	320	11	pptv	1.0	0.035	ug/m3
Carbon Tetrachloride	71	11	pptv	0.45	0.069	ug/m3
1,2-Dichloropropane	ND	11	pptv	ND ND	0.051	ug/m3
Bromodichloromethane	ND ND	11 11	pptv	ND ND	0.074	ug/m3
Trichloroethene cis-1,3-Dichloropropene	ND ND	11	pptv	ND ND	0.059 0.050	ug/m3 ug/m3
trans-1,3-Dichloropropene	ND ND	11	pptv	ND ND	0.050	ug/m3
1,1,2-Trichloroethane	ND	11	pptv pptv	ND ND	0.060	ug/m3
Toluene	480	11	pptv	1.8	0.041	ug/m3
Dibromochloromethane	ND	11	pptv	ND	0.094	ug/m3
1,2-Dibromoethane	ND	11	pptv	ND	0.085	ug/m3
Tetrachloroethene	ND	11	pptv	ND	0.075	ug/m3
Chlorobenzene	ND	11	pptv	ND	0.051	ug/m3
Ethylbenzene	72	11	pptv	0.31	0.048	ug/m3
m,p-Xylenes	220	11	pptv	0.95	0.048	ug/m3
Bromoform	ND	11	pptv	ND	0.11	ug/m3
Styrene	42	11	pptv	0.18	0.047	ug/m3
o-Xylene	86	11	pptv	0.37	0.048	ug/m3
2-Chlorotoluene	ND	11	pptv	ND	0.057	ug/m3
1,3,5-Trimethylbenzene	17	11	pptv	0.081	0.054	ug/m3
1,2,4-Trimethylbenzene	62	11	pptv	0.30	0.054	ug/m3
Benzyl chloride	ND	11	pptv	ND	0.057	ug/m3
1,3-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,4-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,2-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,2,4-Trichlorobenzene	ND	11	pptv	ND	0.082	ug/m3
1,1,2,2-Tetrachloroethane	ND	11	pptv	ND	0.076	ug/m3
1,1,1,2-Tetrachloroethane	ND	11	pptv	ND	0.076	ug/m3
Naphthalene	ND	11	pptv	ND	0.058	ug/m3

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Cheff. Calalyst Environmental	1 3010110115		Localic	JII. Walliul Did	ili vvoikpi	all
518235-017 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	11	pptv	ND	0.12	ug/m3
Xylene (total)	300	11	pptv	1.3	0.048	ug/m3
518235-017 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			98	60-140	ug	_J /m3

Legend

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Type: BS Diln Fac: 1.000 Prep: METHOD

Lab ID: QC1195606 **Batch#:** 352933 **Analysis:** EPA TO-15 SIM

Matrix: Air Analyzed: 10/16/24 06:49 Analyst: OHD

GC1195606 Analyte Spiked Result (V) Units (V) %REC Limits Freon 12 200.0 213.0 pply 107 76-130 Chloromethane 200.0 214.0 pply 110 70-130 Freon 14 200.0 220.1 ppty 110 70-130 Bromomethane 200.0 215.4 ppty 103 70-130 Chloroethane 200.0 195.5 ppty 108 70-130 Chloroethane 200.0 200.5 ppty 100 70-130 Vinyl bromide 200.0 200.5 ppty 100 70-130 Trichlorofluoromethane 200.0 196.8 ppty 98 70-130 1.1-Dichloroethene 200.0 186.6 ppty 98 70-130 Freon 113 200 203.2 ppty 90 70-130 Freon 124 200 196.8 ppty 97 70-130 Trichloroethane 200.0 197.8	Matrix. All	Allalyzed. 10/10/24 00.49		Allalyst. O	טר	
Chloromethane 200.0 214.0 pptv 107 70-130 Freon 114 200.0 220.1 pptv 110 70-130 Bromomethane 200.0 215.4 pptv 108 70-130 Bromomethane 200.0 215.5 pptv 108 70-130 Vinyl bromide 200.0 200.5 pptv 100 70-130 Vinyl bromide 200.0 200.5 pptv 100 70-130 Trichlorofluoremethane 200.0 196.8 pptv 98 70-130 Trichlorofluoremethane 200.0 196.8 pptv 98 70-130 Methylene Chloride 200.0 186.6 pptv 97 70-130 Freon 113 200.0 203.2 pptv 97 70-130 Itans-1,2-Dichloroethane 200.0 197.8 pptv 97 70-130 Isan-1,2-Dichloroethane 200.0 201.8 pptv 101 70-130 Chloroboremane 200.0<	QC1195606 Analyte	Spiked	Result (V)	Units (V)	%REC	Limits
Freen 114	Freon 12	200.0	213.0	pptv	107	70-130
Vinyl Chloride 200.0 264.4 pptv 103 70-130 Brommethane 200.0 215.4 pptv 108 70-130 Chloroethane 200.0 205.5 pptv 100 70-130 Vinyl bromide 200.0 200.5 pptv 100 70-130 Trichloroturomethane 200.0 207.1 pptv 104 70-130 1,1-Dichloroethene 200.0 186.6 pptv 98 70-130 Ireon 113 200.0 186.6 pptv 102 70-130 Irans-1,2-Dichloroethane 200.0 194.4 pptv 97 70-130 Irans-1,2-Dichloroethane 200.0 192.0 pptv 96 70-130 Irans-1,2-Dichloroethane 200.0 201.8 pptv 101 70-130 Irans-1,2-Dichloroethane 200.0 201.8 pptv 101 70-130 Irans-1,2-Dichloroethane 200.0 205.5 pptv 103 70-130 Irans-1,3	Chloromethane	200.0	214.0	pptv	107	70-130
Brommethane 200.0 215.4 pptv 108 70-130 Chloroethane 200.0 195.5 pptv 100 70-130 Vinyl bromide 200.0 200.1 pptv 100 70-130 Trichloroffluoromethane 200.0 207.1 pptv 104 70-130 Methylene Chloride 200.0 186.8 pptv 93 70-130 Freon 113 200.0 203.2 pptv 102 70-130 1,1-Dichloroethane 200.0 194.4 pptv 97 70-130 1,1-Dichloroethane 200.0 197.8 pptv 96 70-130 1,1-Dichloroethane 200.0 192.0 pptv 96 70-130 1,1-Dichloroethane 200.0 200.7 pptv 100 70-130 1,1-Dichloroethane 200.0 200.7 pptv 100 70-130 1,1-Dichloroethane 200.0 205.5 pptv 103 70-130 1,1-Dichloroethane <	Freon 114	200.0	220.1	pptv	110	70-130
Chloroethane 200.0 195.5 pptv 198 70-130 Vinyl bromide 200.0 200.5 pptv 100 70-130 Trichlorolluoromethane 200.0 196.8 pptv 98 70-130 Methylene Chloride 200.0 186.6 pptv 93 70-130 Freon 113 200.0 203.2 pptv 102 70-130 Irans-1,2-Dichloroethene 200.0 192.4 pptv 99 70-130 I-1-Dichloroethane 200.0 192.0 pptv 99 70-130 cis-1,2-Dichloroethane 200.0 192.0 pptv 99 70-130 1,2-Dichloroethane 200.0 201.8 pptv 101 70-130 1,2-Dichloroptome 200.0 205.5 pptv 103 70-130 1,2-Dichloroptome 200.0 206.8 pptv 103 70-130 Carbon Tetrachloride 200.0 206.8 pptv 103 70-130 L2-Dichloroptome </td <td>Vinyl Chloride</td> <td>200.0</td> <td>206.4</td> <td>pptv</td> <td>103</td> <td>70-130</td>	Vinyl Chloride	200.0	206.4	pptv	103	70-130
Viny bromide 200.0 200.5 pptv 100 70-130 Trichlorofluoromethane 200.0 196.8 pptv 98 70-130 1,1-Dichloroethene 200.0 196.8 pptv 93 70-130 Freon 113 200.0 203.2 pptv 92 70-130 Irans-1,2-Dichloroethene 200.0 194.4 pptv 97 70-130 1,1-Dichloroethane 200.0 197.8 pptv 99 70-130 1,1-Dichloroethane 200.0 192.0 pptv 96 70-130 Chloroform 200.0 201.8 pptv 101 70-130 Chloroform 200.0 200.5 pptv 101 70-130 1,1-1-Trichloroethane 200.0 205.5 pptv 100 70-130 1,2-Dichloropropane 200.0 206.8 pptv 103 70-130 1,2-Dichloropropane 200.0 201.5 pptv 101 70-130 1,2-Dichloropropane	Bromomethane	200.0	215.4	pptv	108	70-130
Trichlorofluoromethane 200.0 207.1 pptv 104 70-130 1,1-Dichloroethene 200.0 186.6 pptv 93 70-130 Methylene Chloride 200.0 186.6 pptv 93 70-130 Freon 113 200.0 203.2 pptv 102 70-130 1,1-Dichloroethane 200.0 194.4 pptv 97 70-130 1,1-Dichloroethane 200.0 192.0 pptv 96 70-130 Cis-1,2-Dichloroethane 200.0 201.8 pptv 101 70-130 1,2-Dichloroethane 200.0 200.7 pptv 100 70-130 1,1-Trichloroethane 200.0 205.5 pptv 103 70-130 1,2-Dichloroptroethane 200.0 206.8 pptv 103 70-130 Carbon Tetrachloride 200.0 206.8 pptv 103 70-130 Carbon Tetrachloride 200.0 201.8 pptv 105 70-130 Tor	Chloroethane	200.0	195.5	pptv	98	70-130
1,1 Dichloroethene 200.0 196.8 pptv 98 70-130 Methylene Chloride 200.0 186.6 pptv 102 70-130 Freon 113 200.0 203.2 pptv 102 70-130 Irans-1,2-Dichloroethene 200.0 194.4 pptv 99 70-130 cis-1,2-Dichloroethene 200.0 192.0 pptv 99 70-130 Chloroform 200.0 201.8 pptv 101 70-130 L,2-Dichloroethane 200.0 205.5 pptv 103 70-130 1,1-1-Trichloroethane 200.0 205.5 pptv 103 70-130 1,1-1-Trichloroethane 200.0 205.5 pptv 103 70-130 Benzene 200.0 206.8 pptv 103 70-130 1,2-Dichloropropane 200.0 201.5 pptv 101 70-130 Trichloroethene 200.0 202.8 pptv 105 70-130 Trichloropropane	Vinyl bromide	200.0	200.5	pptv	100	70-130
Methylene Chloride 200.0 186.6 pptv 33 70-130 Freon 113 200.0 203.2 pptv 102 70-130 Irse policy construction 200.0 194.4 pptv 97 70-130 1,1-Dichloroethane 200.0 197.8 pptv 99 70-130 cis-1,2-Dichloroethane 200.0 201.8 pptv 101 70-130 1,2-Dichloroethane 200.0 200.7 pptv 100 70-130 1,2-Dichloroethane 200.0 205.5 pptv 103 70-130 1,2-Dichloropthane 200.0 206.8 pptv 103 70-130 Carbon Tetrachloride 200.0 206.8 pptv 103 70-130 1,2-Dichloropropane 200.0 201.8 pptv 105 70-130 1,2-Dichloropropane 200.0 201.8 pptv 105 70-130 1,2-Dichloropropane 200.0 204.0 pptv 102 70-130 1,2-	Trichlorofluoromethane	200.0	207.1	pptv	104	70-130
Freen 113 200.0 203.2 pptv 102 70-130 trans-1,2-Dichloroethene 200.0 194.4 pptv 97 70-130 cis-1,2-Dichloroethene 200.0 192.0 pptv 96 70-130 Chloroform 200.0 201.8 pptv 101 70-130 L,2-Dichloroethane 200.0 205.5 pptv 103 70-130 1,1,1-Trichloroethane 200.0 205.5 pptv 103 70-130 Benzene 200.0 206.8 pptv 103 70-130 Benzene 200.0 206.8 pptv 103 70-130 1,2-Dichloropropane 200.0 201.5 pptv 101 70-130 1,2-Dichloropropane 200.0 201.8 pptv 105 70-130 cis-1,3-Dichloropropene 200.0 202.8 pptv 101 70-130 cis-1,2-Dichloropropene 200.0 203.6 pptv 102 70-130 cis-1,3-Dichloropropene	1,1-Dichloroethene	200.0	196.8	pptv	98	70-130
trans-1,2-Dichloroethene 200.0 194.4 pptv 97 70-130 1,1-Dichloroethane 200.0 197.8 pptv 99 70-130 cs-1,2-Dichloroethene 200.0 192.0 pptv 101 70-130 Chloroform 200.0 201.8 pptv 101 70-130 1,1-Trichloroethane 200.0 205.5 pptv 103 70-130 1,1,1-Trichloroethane 200.0 205.5 pptv 103 70-130 Benzene 200.0 206.8 pptv 103 70-130 Carbon Tetrachloride 200.0 201.5 pptv 103 70-130 L-2-Dichloropropane 200.0 201.8 pptv 105 70-130 12-Dichloropropane 200.0 201.8 pptv 102 70-130 15-Dichloropropane 200.0 204.0 pptv 102 70-130 15-Dichloropropane 200.0 202.8 pptv 101 70-130 11,12-Trichl	Methylene Chloride	200.0	186.6	pptv	93	70-130
1,1-Dichloroethane 200.0 197.8 pptv 99 70-130 cis-1,2-Dichloroethane 200.0 192.0 pptv 96 70-130 Chloroform 200.0 201.8 pptv 101 70-130 1,2-Dichloroethane 200.0 205.5 pptv 103 70-130 1,1-Trichloroethane 200.0 186.9 pptv 93 70-130 Benzene 200.0 186.9 pptv 103 70-130 Carbon Tetrachloride 200.0 206.8 pptv 101 70-130 1,2-Dichloropropane 200.0 201.5 pptv 105 70-130 Trichloroethane 200.0 201.8 pptv 105 70-130 Trichloroperpane 200.0 204.0 pptv 102 70-130 Trichloroperpane 200.0 202.8 pptv 101 70-130 Trichloroperpane 200.0 203.6 pptv 102 70-130 Tasas-1,3-Dichloropropane	Freon 113		203.2	pptv		
cis-1,2-Dichloroethene 200.0 192.0 pptv 96 70-130 Chloroform 200.0 201.8 pptv 101 70-130 1,2-Dichloroethane 200.0 200.7 pptv 100 70-130 1,1,1-Trichloroethane 200.0 205.5 pptv 103 70-130 Benzene 200.0 206.8 pptv 103 70-130 Carbon Tetrachloride 200.0 201.5 pptv 103 70-130 1,2-Dichloropropane 200.0 201.5 pptv 105 70-130 1,2-Dichloropropane 200.0 201.6 pptv 102 70-130 1richloroethane 200.0 204.0 pptv 102 70-130 1richloropropene 200.0 202.8 pptv 101 70-130 1richloroethane 200.0 203.6 pptv 102 70-130 1,1-2-Trichloroethane 200.0 205.8 pptv 103 70-130 1,1,2-Trichloroethane	trans-1,2-Dichloroethene	200.0	194.4	pptv	97	70-130
Chloroform 200.0 201.8 pptv 10.1 70-130 1,2-Dichloroethane 200.0 200.7 pptv 100 70-130 1,1,1-Trichloroethane 200.0 205.5 pptv 103 70-130 Benzene 200.0 186.9 pptv 103 70-130 Carbon Tetrachloride 200.0 206.8 pptv 101 70-130 1,2-Dichloropropane 200.0 201.5 pptv 105 70-130 Bromodichloromethane 200.0 204.0 pptv 102 70-130 Trichloroethene 200.0 204.0 pptv 102 70-130 trichloropropene 200.0 204.0 pptv 102 70-130 trans-1,3-Dichloropropene 200.0 205.8 pptv 103 70-130 trans-1,3-Dichloropropene 200.0 205.8 pptv 103 70-130 trans-1,3-Dichloropropene 200.0 205.8 pptv 103 70-130 T	1,1-Dichloroethane			pptv	99	
1,2-Dichloroethane 200.0 200.5 pptv 100 70-130 1,1,1-Trichloroethane 200.0 205.5 pptv 103 70-130 Benzene 200.0 186.9 pptv 93 70-130 Carbon Tetrachloride 200.0 206.8 pptv 103 70-130 1,2-Dichloropropane 200.0 201.5 pptv 101 70-130 Bromodichloromethane 200.0 204.0 pptv 102 70-130 Trichloroethene 200.0 202.8 pptv 101 70-130 cis-1,3-Dichloropropene 200.0 202.8 pptv 101 70-130 trans-1,3-Dichloropropropene 200.0 203.6 pptv 102 70-130 1,1,2-Trichloroethane 200.0 205.8 pptv 102 70-130 Toluene 200.0 184.5 pptv 92 70-130 Dibromochloromethane 200.0 214.0 pptv 107 70-130 Tetrac	cis-1,2-Dichloroethene		192.0	pptv	96	
1,1,1-Trichloroethane 200.0 205.5 pptv 103 70-130 Benzene 200.0 186.9 pptv 93 70-130 Carbon Tetrachloride 200.0 206.8 pptv 103 70-130 1,2-Dichloropropane 200.0 201.5 pptv 105 70-130 Bromodichloromethane 200.0 201.8 pptv 105 70-130 Trichloroethene 200.0 204.0 pptv 102 70-130 sis-13-Dichloropropene 200.0 202.8 pptv 102 70-130 trans-1,3-Dichloropropene 200.0 203.6 pptv 102 70-130 trans-1,3-Dichloropropene 200.0 205.8 pptv 103 70-130 trans-1,3-Dichloropropene 200.0 184.5 pptv 102 70-130 Tolluene 200.0 184.5 pptv 107 70-130 Tolluene 200.0 214.0 pptv 107 70-130 Tetrachlo				pptv	101	
Benzene 200.0 186.9 pptv 93 70-130 Carbon Tetrachloride 200.0 206.8 pptv 103 70-130 1,2-Dichloropropane 200.0 201.5 pptv 101 70-130 Bromodichloromethane 200.0 210.8 pptv 105 70-130 Trichloroethene 200.0 204.0 pptv 102 70-130 cis-1,3-Dichloropropene 200.0 203.6 pptv 101 70-130 trans-1,3-Dichloropropene 200.0 203.6 pptv 102 70-130 1,1,2-Trichloroethane 200.0 205.8 pptv 103 70-130 1,1,2-Trichloroethane 200.0 184.5 pptv 102 70-130 1,2-Dibromoethane 200.0 214.0 pptv 107 70-130 1,2-Dibromoethane 200.0 204.4 pptv 102 70-130 1,2-Dibromoethane 200.0 194.5 pptv 102 70-130 Et	1,2-Dichloroethane	200.0	200.7	pptv	100	70-130
Carbon Tetrachloride 200.0 206.8 pptv 103 70-130 1,2-Dichloropropane 200.0 201.5 pptv 101 70-130 Bromodichloromethane 200.0 204.0 pptv 102 70-130 Trichloroethene 200.0 202.8 pptv 101 70-130 cis-1,3-Dichloropropene 200.0 203.6 pptv 102 70-130 trans-1,3-Dichloropropene 200.0 205.8 pptv 103 70-130 1,1,2-Trichloroethane 200.0 205.8 pptv 103 70-130 Dibromochloromethane 200.0 184.5 pptv 107 70-130 Dibromochloromethane 200.0 214.0 pptv 107 70-130 1,2-Dibromoethane 200.0 203.3 pptv 102 70-130 Tetrachloroethene 200.0 204.4 pptv 102 70-130 Ethylbenzene 200.0 184.5 pptv 97 70-130	1,1,1-Trichloroethane	200.0	205.5	pptv	103	
1,2-Dichloropropane 200.0 201.5 pptv 101 70-130 Bromodichloromethane 200.0 210.8 pptv 105 70-130 Trichloroethene 200.0 204.0 pptv 102 70-130 cis-1,3-Dichloropropene 200.0 203.6 pptv 101 70-130 trans-1,3-Dichloropropene 200.0 203.6 pptv 102 70-130 1,1,2-Trichloroethane 200.0 205.8 pptv 103 70-130 Toluene 200.0 184.5 pptv 92 70-130 Dibromochloromethane 200.0 214.0 pptv 107 70-130 1,2-Dibromoethane 200.0 204.4 pptv 102 70-130 1,2-Dibromoethane 200.0 204.4 pptv 102 70-130 Etrachloroethene 200.0 194.5 pptv 97 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 Ethylbenzene </td <td>Benzene</td> <td></td> <td>186.9</td> <td>pptv</td> <td>93</td> <td></td>	Benzene		186.9	pptv	93	
Bromodichloromethane 200.0 210.8 pptv 105 70-130 Trichloroethene 200.0 204.0 pptv 102 70-130 cis-1,3-Dichloropropene 200.0 202.8 pptv 101 70-130 trans-1,3-Dichloropropene 200.0 203.6 pptv 102 70-130 1,1,2-Trichloroethane 200.0 205.8 pptv 103 70-130 1,1,2-Dibromoethane 200.0 184.5 pptv 107 70-130 Dibromochloromethane 200.0 214.0 pptv 102 70-130 1,2-Dibromoethane 200.0 204.4 pptv 102 70-130 1,2-Dibromoethane 200.0 204.4 pptv 102 70-130 Tetrachloroethene 200.0 194.5 pptv 97 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 Ethylbenzene 200.0 378.4 pptv 95 70-130 Styrene<	Carbon Tetrachloride		206.8	pptv	103	
Trichloroethene 200.0 204.0 pptv 102 70-130 cis-1,3-Dichloropropene 200.0 202.8 pptv 101 70-130 trans-1,3-Dichloropropene 200.0 203.6 pptv 102 70-130 1,1,2-Trichloroethane 200.0 184.5 pptv 103 70-130 Toluene 200.0 214.0 pptv 107 70-130 Dibromochloromethane 200.0 203.3 pptv 102 70-130 1,2-Dibromoethane 200.0 203.3 pptv 102 70-130 Tetrachloroethene 200.0 204.4 pptv 102 70-130 Tetrachloroethene 200.0 194.5 pptv 102 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 Ethylbenzene 200.0 181.9 pptv 95 70-130 Styrene 200.0 183.5 pptv 92 70-130 Styrene 200.0 <td>1,2-Dichloropropane</td> <td>200.0</td> <td></td> <td>pptv</td> <td>101</td> <td></td>	1,2-Dichloropropane	200.0		pptv	101	
cis-1,3-Dichloropropene 200.0 202.8 pptv 101 70-130 trans-1,3-Dichloropropene 200.0 203.6 pptv 102 70-130 1,1,2-Trichloroethane 200.0 205.8 pptv 103 70-130 Toluene 200.0 184.5 pptv 92 70-130 Dibromochloromethane 200.0 203.3 pptv 107 70-130 1,2-Dibromoethane 200.0 203.3 pptv 102 70-130 1,2-Dibromoethane 200.0 204.4 pptv 102 70-130 1,2-Dibromoethane 200.0 204.4 pptv 102 70-130 1,2-Dibromoethane 200.0 194.5 pptv 97 70-130 1,2-Dibromoethane 200.0 181.9 pptv 97 70-130 Ethylbenzene 200.0 181.9 pptv 95 70-130 Ethylbenzene 200.0 183.5 pptv 95 70-130 Styrene <t< td=""><td>Bromodichloromethane</td><td>200.0</td><td>210.8</td><td>pptv</td><td>105</td><td>70-130</td></t<>	Bromodichloromethane	200.0	210.8	pptv	105	70-130
trans-1,3-Dichloropropene 200.0 203.6 pptv 102 70-130 1,1,2-Trichloroethane 200.0 205.8 pptv 103 70-130 Toluene 200.0 184.5 pptv 92 70-130 Dibromochloromethane 200.0 214.0 pptv 107 70-130 1,2-Dibromoethane 200.0 203.3 pptv 102 70-130 Tetrachloroethene 200.0 204.4 pptv 102 70-130 Chlorobenzene 200.0 194.5 pptv 97 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 Ethylbenzene 200.0 378.4 pptv 95 70-130 Styrene 200.0 214.1 pptv 107 70-130 Styrene 200.0 193.5 pptv 97 70-130 2-Chlorotoluene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0	Trichloroethene			pptv	102	70-130
1,1,2-Trichloroethane 200.0 205.8 pptv 103 70-130 Toluene 200.0 184.5 pptv 92 70-130 Dibromochloromethane 200.0 214.0 pptv 107 70-130 1,2-Dibromoethane 200.0 203.3 pptv 102 70-130 Tetrachloroethene 200.0 204.4 pptv 102 70-130 Chlorobenzene 200.0 194.5 pptv 97 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 m,p-Xylenes 400.0 378.4 pptv 95 70-130 Bromoform 200.0 183.5 pptv 95 70-130 Styrene 200.0 194.7 pptv 97 70-130 Styrene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 194.7 pptv 97 70-130 1,2,4-Trimethylbenzene 200.0 198.7	cis-1,3-Dichloropropene			pptv		70-130
Toluene 200.0 184.5 pptv 92 70-130 Dibromochloromethane 200.0 214.0 pptv 107 70-130 1,2-Dibromoethane 200.0 203.3 pptv 102 70-130 Tetrachloroethene 200.0 204.4 pptv 102 70-130 Chlorobenzene 200.0 194.5 pptv 97 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 m.p-Xylenes 400.0 378.4 pptv 95 70-130 Bromoform 200.0 183.5 pptv 95 70-130 Styrene 200.0 183.5 pptv 92 70-130 Styrene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 194.7 pptv 96 70-130 2-Chlorotoluene 200.0 198.7 pptv </td <td>trans-1,3-Dichloropropene</td> <td>200.0</td> <td>203.6</td> <td>pptv</td> <td>102</td> <td>70-130</td>	trans-1,3-Dichloropropene	200.0	203.6	pptv	102	70-130
Dibromochloromethane 200.0 214.0 pptv 107 70-130 1,2-Dibromoethane 200.0 203.3 pptv 102 70-130 Tetrachloroethene 200.0 204.4 pptv 102 70-130 Chlorobenzene 200.0 194.5 pptv 97 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 m,p-Xylenes 400.0 378.4 pptv 95 70-130 Bromoform 200.0 183.5 pptv 92 70-130 Styrene 200.0 194.7 pptv 97 70-130 0-Xylene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 194.7 pptv 97 70-130 1,3,5-Trimethylbenzene 200.0 198.7 pptv 99 70-130 1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 1,3-Dichlorobenzene 200.0 <td< td=""><td></td><td></td><td></td><td>pptv</td><td></td><td></td></td<>				pptv		
1,2-Dibromoethane 200.0 203.3 pptv 102 70-130 Tetrachloroethene 200.0 204.4 pptv 102 70-130 Chlorobenzene 200.0 194.5 pptv 97 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 m,p-Xylenes 400.0 378.4 pptv 95 70-130 Bromoform 200.0 214.1 pptv 107 70-130 Styrene 200.0 183.5 pptv 92 70-130 c-Xylene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 191.6 pptv 96 70-130 1,3,5-Trimethylbenzene 200.0 198.7 pptv 99 70-130 1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 1,3-Dichlorobenzene 200.0 199.1 pptv 105 70-130 1,4-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,2,4-Trichlorobenzene	Toluene		184.5	pptv		
Tetrachloroethene 200.0 204.4 pptv 102 70-130 Chlorobenzene 200.0 194.5 pptv 97 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 m,p-Xylenes 400.0 378.4 pptv 95 70-130 Bromoform 200.0 214.1 pptv 107 70-130 Styrene 200.0 183.5 pptv 92 70-130 2-Chlorotoluene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 191.6 pptv 96 70-130 1,3,5-Trimethylbenzene 200.0 198.7 pptv 99 70-130 1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 1,3-Dichlorobenzene 200.0 209.0 pptv 105 70-130 1,4-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,2-Pichlorobenzene 200.0				pptv		
Chlorobenzene 200.0 194.5 pptv 97 70-130 Ethylbenzene 200.0 181.9 pptv 91 70-130 m,p-Xylenes 400.0 378.4 pptv 95 70-130 Bromoform 200.0 214.1 pptv 107 70-130 Styrene 200.0 183.5 pptv 92 70-130 0-Xylene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 191.6 pptv 96 70-130 1,3,5-Trimethylbenzene 200.0 198.7 pptv 99 70-130 1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 1,3-Dichloride 200.0 209.0 pptv 105 70-130 1,3-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2,4-Trichlorobenzene 200.0 <	1,2-Dibromoethane		203.3	pptv	102	
Ethylbenzene 200.0 181.9 pptv 91 70-130 m,p-Xylenes 400.0 378.4 pptv 95 70-130 Bromoform 200.0 214.1 pptv 107 70-130 Styrene 200.0 183.5 pptv 92 70-130 o-Xylene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 191.6 pptv 96 70-130 1,3,5-Trimethylbenzene 200.0 198.7 pptv 99 70-130 1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 1,3-Dichloride 200.0 209.0 pptv 105 70-130 1,3-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2-A-Trichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,1,2-Tetrachloroethane <td>Tetrachloroethene</td> <td></td> <td></td> <td>pptv</td> <td></td> <td></td>	Tetrachloroethene			pptv		
m,p-Xylenes 400.0 378.4 pptv 95 70-130 Bromoform 200.0 214.1 pptv 107 70-130 Styrene 200.0 183.5 pptv 92 70-130 o-Xylene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 191.6 pptv 96 70-130 1,3,5-Trimethylbenzene 200.0 198.7 pptv 99 70-130 1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 1,3-Dichlorobenzene 200.0 209.0 pptv 105 70-130 1,3-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2-Dichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetr	Chlorobenzene			pptv		
Bromoform 200.0 214.1 pptv 107 70-130 Styrene 200.0 183.5 pptv 92 70-130 o-Xylene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 191.6 pptv 96 70-130 1,3,5-Trimethylbenzene 200.0 198.7 pptv 99 70-130 1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 1,3-Dichlorobenzene 200.0 209.0 pptv 105 70-130 1,3-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2-Dichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 Naphthalene				pptv		
Styrene 200.0 183.5 pptv 92 70-130 o-Xylene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 191.6 pptv 96 70-130 1,3,5-Trimethylbenzene 200.0 198.7 pptv 99 70-130 1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 Benzyl chloride 200.0 209.0 pptv 105 70-130 1,3-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2-Dichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130				pptv		
o-Xylene 200.0 194.7 pptv 97 70-130 2-Chlorotoluene 200.0 191.6 pptv 96 70-130 1,3,5-Trimethylbenzene 200.0 198.7 pptv 99 70-130 1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 Benzyl chloride 200.0 209.0 pptv 105 70-130 1,3-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2-Dichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130				pptv		
2-Chlorotoluene200.0191.6pptv9670-1301,3,5-Trimethylbenzene200.0198.7pptv9970-1301,2,4-Trimethylbenzene200.0189.8pptv9570-130Benzyl chloride200.0209.0pptv10570-1301,3-Dichlorobenzene200.0199.1pptv10070-1301,4-Dichlorobenzene200.0201.7pptv10170-1301,2-Dichlorobenzene200.0195.0pptv9770-1301,2,4-Trichlorobenzene200.0165.9pptv8370-1301,1,2,2-Tetrachloroethane200.0200.9pptv10070-1301,1,1,2-Tetrachloroethane200.0206.6pptv10370-130Naphthalene200.0142.3pptv7170-130	-					
1,3,5-Trimethylbenzene 200.0 198.7 pptv 99 70-130 1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 Benzyl chloride 200.0 209.0 pptv 105 70-130 1,3-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2-Dichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130	-					
1,2,4-Trimethylbenzene 200.0 189.8 pptv 95 70-130 Benzyl chloride 200.0 209.0 pptv 105 70-130 1,3-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2-Dichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130				pptv		
Benzyl chloride 200.0 209.0 pptv 105 70-130 1,3-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2-Dichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130						
1,3-Dichlorobenzene 200.0 199.1 pptv 100 70-130 1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2-Dichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130						
1,4-Dichlorobenzene 200.0 201.7 pptv 101 70-130 1,2-Dichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130						
1,2-Dichlorobenzene 200.0 195.0 pptv 97 70-130 1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130						
1,2,4-Trichlorobenzene 200.0 165.9 pptv 83 70-130 1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130						
1,1,2,2-Tetrachloroethane 200.0 200.9 pptv 100 70-130 1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130	•					
1,1,1,2-Tetrachloroethane 200.0 206.6 pptv 103 70-130 Naphthalene 200.0 142.3 pptv 71 70-130						
Naphthalene 200.0 142.3 pptv 71 70-130						
•						
Hexachlorobutadiene 200.0 178.8 pptv 89 70-130	•					
	Hexachlorobutadiene	200.0	178.8	pptv	89	70-130

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

QC1195606 Surrogate%RECLimitsBromofluorobenzene10370-130

Type: BSD Diln Fac: 1.000 Prep: METHOD

Lab ID: QC1195607 **Batch#:** 352933 **Analysis:** EPA TO-15 SIM

Matrix: Air Analyzed: 10/16/24 07:31 Analyst: OHD

QC1195607 Analyte	Spiked	Result (V)	Units (V)	%REC	Limits	RPD	Lim
Freon 12	200.0	216.9	pptv	108	70-130	2	25
Chloromethane	200.0	217.1	pptv	109	70-130	1	25
Freon 114	200.0	223.8	pptv	112	70-130	2	25
Vinyl Chloride	200.0	211.3	pptv	106	70-130	2	25
Bromomethane	200.0	220.7	pptv	110	70-130	2	25
Chloroethane	200.0	198.9	pptv	99	70-130	2	25
Vinyl bromide	200.0	203.9	pptv	102	70-130	2	25
Trichlorofluoromethane	200.0	210.7	pptv	105	70-130	2	25
1,1-Dichloroethene	200.0	201.1	pptv	101	70-130	2	25
Methylene Chloride	200.0	190.5	pptv	95	70-130	2	25
Freon 113	200.0	206.7	pptv	103	70-130	2	25
trans-1,2-Dichloroethene	200.0	198.7	pptv	99	70-130	2	25
1,1-Dichloroethane	200.0	202.3	pptv	101	70-130	2	25
cis-1,2-Dichloroethene	200.0	197.2	pptv	99	70-130	3	25
Chloroform	200.0	205.2	pptv	103	70-130	2	25
1,2-Dichloroethane	200.0	204.8	pptv	102	70-130	2	25
1,1,1-Trichloroethane	200.0	209.6	pptv	105	70-130	2	25
Benzene	200.0	191.1	pptv	96	70-130	2	25
Carbon Tetrachloride	200.0	210.1	pptv	105	70-130	2	25
1,2-Dichloropropane	200.0	204.7	pptv	102	70-130	2	25
Bromodichloromethane	200.0	213.0	pptv	107	70-130	1	25
Trichloroethene	200.0	206.1	pptv	103	70-130	1	25
cis-1,3-Dichloropropene	200.0	206.5	pptv	103	70-130	2	25
trans-1,3-Dichloropropene	200.0	207.0	pptv	104	70-130	2	25
1,1,2-Trichloroethane	200.0	207.9	pptv	104	70-130	1	25
Toluene	200.0	189.0	pptv	95	70-130	2	25
Dibromochloromethane	200.0	216.8	pptv	108	70-130	1	25
1,2-Dibromoethane	200.0	207.1	pptv	104	70-130	2	25
Tetrachloroethene	200.0	207.5	pptv	104	70-130	1	25
Chlorobenzene	200.0	197.3	pptv	99	70-130	1	25
Ethylbenzene	200.0	185.5	pptv	93	70-130	2	25
m,p-Xylenes	400.0	385.7	pptv	96	70-130	2	25
Bromoform	200.0	215.7	pptv	108	70-130	1	25
Styrene	200.0	187.6	pptv	94	70-130	2	25
o-Xylene	200.0	199.2	pptv	100	70-130	2	25
2-Chlorotoluene	200.0	196.0	pptv	98	70-130	2	25
1,3,5-Trimethylbenzene	200.0	203.2	pptv	102	70-130	2	25
1,2,4-Trimethylbenzene	200.0	195.7	pptv	98	70-130	3	25
Benzyl chloride	200.0	215.5	pptv	108	70-130	3	25
1,3-Dichlorobenzene	200.0	206.9	pptv	103	70-130	4	25
1,4-Dichlorobenzene	200.0	201.0	pptv	100	70-130	0	25
1,2-Dichlorobenzene	200.0	199.2	pptv	100	70-130	2	25
1,2,4-Trichlorobenzene	200.0	171.2	pptv	86	70-130	3	25
1,1,2,2-Tetrachloroethane	200.0	203.5	pptv	102	70-130	1	25
1,1,1,2-Tetrachloroethane	200.0	207.9	pptv	104	70-130	1	25

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

•						•	
QC1195607 Analyte	Spiked	Result (V)	Units (V)	%REC	Limits	RPD	Lim
Naphthalene	200.0	149.1	pptv	75	70-130	5	25
Hexachlorobutadiene	200.0	182.7	pptv	91	70-130	2	25
QC1195607 Surrogate				%RE	С	Limits	

102

70-130

Bromofluorobenzene Legend

RPD: Relative Percent Difference

Result (V): Result in volume units

Lab #: 518235 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Type: BLANK Diln Fac: 1.000 Prep: METHOD

Lab ID: QC1195608 **Batch#:** 352933 **Analysis:** EPA TO-15 SIM

Matrix: Air Analyzed: 10/16/24 08:59 Analyst: OHD

matrixi / III	Analyzour 10/1	Analyzea: 10/10/24 00:00			Analyst. One			
QC1195608 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)		
Freon 12	ND	10	pptv	ND	0.049	ug/m3		
Chloromethane	ND	100	pptv	ND	0.21	ug/m3		
Freon 114	ND	10	pptv	ND	0.070	ug/m3		
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3		
Bromomethane	ND	10	pptv	ND	0.039	ug/m3		
Chloroethane	ND	10	pptv	ND	0.026	ug/m3		
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3		
Trichlorofluoromethane	ND	10	pptv	ND	0.056	ug/m3		
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3		
Methylene Chloride	ND	20	pptv	ND	0.069	ug/m3		
Freon 113	ND	10	pptv	ND	0.077	ug/m3		
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3		
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3		
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3		
Chloroform	ND	10	pptv	ND	0.049	ug/m3		
1,2-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3		
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3		
Benzene	ND	10	pptv	ND	0.032	ug/m3		
Carbon Tetrachloride	ND	10	pptv	ND	0.063	ug/m3		
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3		
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3		
Frichloroethene	ND	10	pptv	ND	0.054	ug/m3		
cis-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3		
rans-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3		
1,1,2-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3		
Toluene	ND	10	pptv	ND	0.038	ug/m3		
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3		
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3		
Tetrachloroethene	ND	10	pptv	ND ND	0.068	ug/m3		
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3		
Ethylbenzene	ND	10	pptv	ND	0.043	ug/m3		
m,p-Xylenes	ND ND	10	pptv	ND	0.043	ug/m3		
Bromoform	ND ND	10		ND	0.10	ug/m3		
Styrene	ND ND	10	pptv	ND ND	0.10	ug/m3		
o-Xylene	ND ND	10	pptv	ND	0.043	ug/m3		
2-Chlorotoluene	ND ND	10	pptv	ND ND	0.043	-		
			pptv			ug/m3		
1,3,5-Trimethylbenzene	ND	10	pptv	ND	0.049	ug/m3		
1,2,4-Trimethylbenzene	ND	10	pptv	ND	0.049	ug/m3		
Benzyl chloride	ND	10	pptv	ND	0.052	ug/m3		
1,3-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3		
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3		
1,2-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3		
1,2,4-Trichlorobenzene	ND	10	pptv	ND	0.074	ug/m3		
1,1,2,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3		
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3		
Naphthalene	ND	10	pptv	ND	0.052	ug/m3		
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3		
Xylene (total)	ND	10	pptv	ND	0.043	ug/m3		

Lab #: 518235Project#: STANDARDClient: Catalyst Environmental SolutionsLocation: Walnut Bluff WorkplanQC1195608 Surrogate%RECLimitsUnits (M)Bromofluorobenzene9070-130ug/m3

Legend

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 522442

Report Level : II

Report Date : 12/23/2024

Analytical Report prepared for:

Yola Bayram Catalyst Environmental Solutions 315 Montana Avenue Suite 311 Santa Monica, CA 90403

Location: Walnut Bluff Workplan

Authorized for release by:

Miguel Gamboa, Project Manager miguel.gamboa@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105, ORELAP# 4197

Sample Summary

Yola Bayram Lab Job #: 522442

Catalyst Environmental Location: Walnut Bluff Workplan

Solutions Date Received: 12/16/24 315 Montana Avenue

Suite 311

Santa Monica, CA 90403

Sample ID	Lab ID	Collected	Matrix
WB02-14D-R2	522442-001	12/16/24 14:03	Air
WB03-14D-R2	522442-002	12/16/24 14:10	Air
WB05-14D-R2	522442-003	12/16/24 14:15	Air
WB10-14D-R2	522442-004	12/16/24 14:24	Air

Case Narrative

Catalyst Environmental Solutions 315 Montana Avenue

315 Montana Avenu

Suite 311

Santa Monica, CA 90403

Yola Bayram

Lab Job Number: 522442

Location: Walnut Bluff Workplan

Date Received: 12/16/24

This data package contains sample and QC results for four air samples, requested for the above referenced project on 12/16/24. The samples were received intact.

Volatile Organics in Air by MS (EPA TO-15 SIM):

No analytical problems were encountered.

Yola Bayram Catalyst Environmental Solutions 315 Montana Avenue Suite 311 Santa Monica, CA 90403

1 of 7

Lab Job #: 522442 Location: Walnut Bluff Workplan Date Received: 12/16/24

Sample ID: WB02-14D-R2 Lab ID: 522442-001 Collected: 12/16/24 14:03

Matrix: Air

2442-001 Analyte	Result	Qual	Units	RL
ethod: EPA TO-15 SIM ep Method: METHOD				
Freon 12	440		pptv	10
Freon 12	2.2		ug/m3	0.049
Chloromethane	540		pptv	100
Chloromethane	1.1		ug/m3	0.21
Freon 114	15		pptv	10
Freon 114	0.10		ug/m3	0.070
Bromomethane	38		pptv	10
Bromomethane	0.15		ug/m3	0.039
Trichlorofluoromethane	190		pptv	10
Trichlorofluoromethane	1.1		ug/m3	0.056
Methylene Chloride	240		pptv	20
Methylene Chloride	0.84		ug/m3	0.069
Freon 113	60		pptv	10
Freon 113	0.46		ug/m3	0.077
Chloroform	39		pptv	10
Chloroform	0.19		ug/m3	0.049
1,2-Dichloroethane	26		pptv	10
1,2-Dichloroethane	0.10		ug/m3	0.040
Benzene	600		pptv	10
Benzene	1.9		ug/m3	0.032
Carbon Tetrachloride	70		pptv	10
Carbon Tetrachloride	0.44		ug/m3	0.063
Toluene	870		pptv	10
Toluene	3.3		ug/m3	0.038
Tetrachloroethene	15		pptv	10
Tetrachloroethene	0.10		ug/m3	0.068
Ethylbenzene	200		pptv	10
Ethylbenzene	0.88		ug/m3	0.043
m,p-Xylenes	580		pptv	10
m,p-Xylenes	2.5		ug/m3	0.043
Styrene	96		pptv	10
Styrene	0.41		ug/m3	0.043
o-Xylene	220		pptv	10
o-Xylene	0.95		ug/m3	0.043
1,3,5-Trimethylbenzene	68		pptv	10
1,3,5-Trimethylbenzene	0.34		ug/m3	0.049
1,2,4-Trimethylbenzene	240		pptv	10
1,2,4-Trimethylbenzene	1.2		ug/m3	0.049
1,4-Dichlorobenzene	14		pptv	10
1,4-Dichlorobenzene	0.082		ug/m3	0.060

522442-001 Analyte		Result	Qual	Units	RL
	Naphthalene	30		pptv	10
	Naphthalene	0.15		ug/m3	0.052
	Xylene (total)	800		pptv	10
	Xylene (total)	3.5		ug/m3	0.043

Sample ID: WB03-14D-R2 Lab ID: 522442-002 Collected: 12/16/24 14:10

Matrix: Air

522442-002 Analyte	Result	Qual	Units	RI
Method: EPA TO-15 SIM				
Prep Method: METHOD Freon 12	440		pptv	1
Freon 12	2.2		ug/m3	0.04
Chloromethane	550		pptv	10
Chloromethane	1.1		ug/m3	0.2
Freon 114	15		pptv	1
Freon 114	0.10		ug/m3	0.07
Bromomethane	40		pptv	1
Bromomethane	0.16		ug/m3	0.03
Trichlorofluoromethane	190		pptv	1
Trichlorofluoromethane	1.1		ug/m3	0.05
Methylene Chloride	270		pptv	2
Methylene Chloride	0.93		ug/m3	0.06
Freon 113	61		pptv	1
Freon 113	0.47		ug/m3	0.07
Chloroform	40		pptv	1
Chloroform	0.20		ug/m3	0.04
1,2-Dichloroethane	24		pptv	1
1,2-Dichloroethane	0.097		ug/m3	0.04
Benzene	540		pptv	1
Benzene	1.7		ug/m3	0.03
Carbon Tetrachloride	72		pptv	1
Carbon Tetrachloride	0.45 860		ug/m3	0.06
Toluene Toluene	3.2		pptv ug/m3	0.03
Tetrachloroethene	16		pptv	1
Tetrachloroethene	0.11		ug/m3	0.06
Ethylbenzene	170		pptv	1
Ethylbenzene	0.73		ug/m3	0.04
m,p-Xylenes	540		pptv	1
m,p-Xylenes	2.3		ug/m3	0.04
Styrene	110		pptv	1
Styrene	0.46		ug/m3	0.04
o-Xylene	200		pptv	1
o-Xylene	0.89		ug/m3	0.04
1,3,5-Trimethylbenzene	54		pptv	1
1,3,5-Trimethylbenzene	0.26		ug/m3	0.04
1,2,4-Trimethylbenzene	190		pptv	1
1,2,4-Trimethylbenzene	0.92		ug/m3	0.04
1,4-Dichlorobenzene	15		pptv	1
1,4-Dichlorobenzene	0.092		ug/m3	0.06
Naphthalene	21		pptv	1
Naphthalene	0.11		ug/m3	0.05
Xylene (total)	740		pptv	1
Xylene (total)	3.2		ug/m3	0.04

Sample ID: WB05-14D-R2 Lab ID: 522442-003 Collected: 12/16/24 14:15

Matrix: Air

522442-003 Analyte	Result	Qual	Units	RI
Method: EPA TO-15 SIM				
Prep Method: METHOD Freon 12	440		pptv	1
Freon 12	2.2		ug/m3	0.05
Chloromethane	540		pptv	11
Chloromethane	1.1		ug/m3	0.2
Freon 114	15		pptv	1
Freon 114	0.10		ug/m3	0.07
Bromomethane	39		pptv	1
Bromomethane	0.15		ug/m3	0.04
Trichlorofluoromethane	190		pptv	1
Trichlorofluoromethane	1.1		ug/m3	0.06
Methylene Chloride	260		pptv	2
Methylene Chloride	0.91		ug/m3	0.07
Freon 113	61		pptv	1
Freon 113	0.47		ug/m3	0.08
Chloroform	39		pptv	1
Chloroform	0.19		ug/m3	0.05
1,2-Dichloroethane	24		pptv	1
1,2-Dichloroethane	0.096		ug/m3	0.04
Benzene	550		pptv	1
Benzene	1.7		ug/m3	0.03
Carbon Tetrachloride	71		pptv	1
Carbon Tetrachloride	0.45 890		ug/m3	0.06
Toluene Toluene	3.4		pptv ug/m3	0.04
Tetrachloroethene	17		pptv	1
Tetrachloroethene	0.12		ug/m3	0.07
Ethylbenzene	170		pptv	1
Ethylbenzene	0.72		ug/m3	0.04
m,p-Xylenes	520		pptv	1
m,p-Xylenes	2.3		ug/m3	0.04
Styrene	110		pptv	1
Styrene	0.47		ug/m3	0.04
o-Xylene	200		pptv	1
o-Xylene	0.87		ug/m3	0.04
1,3,5-Trimethylbenzene	68		pptv	1
1,3,5-Trimethylbenzene	0.33		ug/m3	0.05
1,2,4-Trimethylbenzene	260		pptv	1
1,2,4-Trimethylbenzene	1.3		ug/m3	0.05
1,4-Dichlorobenzene	15		pptv	1
1,4-Dichlorobenzene	0.090		ug/m3	0.06
Naphthalene	31		pptv	1
Naphthalene	0.16		ug/m3	0.05
Xylene (total)	720		pptv	1
Xylene (total)	3.1		ug/m3	0.04

Sample ID: WB10-14D-R2 Lab ID: 522442-004 Collected: 12/16/24 14:24

Matrix: Air

522442-004 Analyte	Result	Qual	Units	RL
Method: EPA TO-15 SIM Prep Method: METHOD				
Freon 12	440		pptv	10
Freon 12	2.2		ug/m3	0.049
Chloromethane	550		pptv	100
Chloromethane	1.1		ug/m3	0.21
Freon 114	15		pptv	10
Freon 114	0.10		ug/m3	0.070
Bromomethane	37		pptv	10
Bromomethane	0.15		ug/m3	0.039
Trichlorofluoromethane	190		pptv	10
Trichlorofluoromethane	1.1		ug/m3	0.056
Methylene Chloride	250		pptv	20
Methylene Chloride	0.87		ug/m3	0.069
Freon 113	60		pptv	10
Freon 113	0.46		ug/m3	0.077
Chloroform	41		pptv	10
Chloroform	0.20		ug/m3	0.049
1,2-Dichloroethane	25		pptv	10
1,2-Dichloroethane	0.10		ug/m3	0.040
Benzene	610		pptv	10
Benzene	1.9		ug/m3	0.032
Carbon Tetrachloride	71		pptv	10
Carbon Tetrachloride	0.45		ug/m3	0.063
Toluene	850		pptv	10
Toluene	3.2		ug/m3	0.038
Tetrachloroethene	17		pptv	10
Tetrachloroethene	0.12		ug/m3	0.068
Ethylbenzene	190		pptv	10
Ethylbenzene	0.84		ug/m3	0.043
m,p-Xylenes	570		pptv	10
m,p-Xylenes	2.5		ug/m3	0.043
Styrene	85		pptv	10
Styrene	0.36		ug/m3	0.043
o-Xylene	200		pptv	10
o-Xylene	0.87		ug/m3	0.043
1,3,5-Trimethylbenzene	62		pptv	10
1,3,5-Trimethylbenzene	0.30		ug/m3	0.049
1,2,4-Trimethylbenzene	220		pptv	10
1,2,4-Trimethylbenzene	1.1		ug/m3	0.049
Naphthalene	11		pptv	10
Naphthalene	0.060		ug/m3	0.052
Xylene (total)	770		pptv	10
Xylene (total)	3.3		ug/m3	0.043

Air Chain of Custody Record Required Turnaround Time Comments 10/1/10 46/9//e Standard 5 Day 3 Day 2 Day 1 Day Custom TAT: Lab Job No. 533 448 **Analysis Request** Lab Quote Number: PO Number: W1591-义 2 × ENTHALPY 1 50 Stop Sampling Information (2/16/24 14:03 14/14/24 14:24 12/11/24 14:10 Entralox 12/11/24 14:15 Walnut Blutt Workplan Time Elizabeth twang PROJECT INFORMATION Date 30 30 14:07 30 B Start Sampling Information C70039 66 A70577 142/24 14:22 GL A 70014 12/2/27 14:02 070162 66 A70230 12/2/24 14:13 Time C70035 66 A70079 121424 Sampled By: Global ID: Number: Address: Date Flow Controller ID atolyst Environmental Solutions **Equipment Information** Canister Size (6L or 1L) 1315 Moutana Ave, Suite 311 C70018 Canister ID y bayrain & ce. solutions **CUSTOMER INFORMATION** Santa Monica, CA 90403 (I) Indoor (A) Ambient (SV) Soil Vapor Air Type Phone: (2/3) 204 -8477 Special Instructions: K K T Q Tola Bayram 3 WB05 - 140- R2 4 WBW-140- R2 WB03-140- RZ WB02-140-RZ 931 W. Barkley Ave., Orange, CA 92868 Phone: (714) 771-6900 Fax: (714) 538-1209 ELINQUISHED ELINQUISHED RELINQUISHED RECEIVED BY: ECEIVED BY ECEIVED BY Report To: Email:

6

SAMPLE RECEIPT CHECKLIST		-	
Section 1: General Info			
Date Received: 12/16/24 Wo# 522442 Client: Catalyst Environmental Solutions		ENT	HALPY
Section 2: Shipping / Custody Are custody se	als presen	t? 🗆 Ye	s 🗹 No
Custody seals intact on arrival? ☑ N/A ☐ Yes ☐ No ☐ On cooler / box ☐ On samples			
Shipping Info:			
Section 3a: Condition / Packaging ☐ Outside 0.0 - 6.0°C (0.0 - 10.0°C for n	nicrobiolog	gy) (PM ı	notified)
Date Opened 12/16/24 By (initials) TLK Type of ice used :	□Non	e	
\square Samples received on ice directly from the field; cooling process had begun. (if checked, skip temperatur	es)		
■ Sample matrix doesn't require cooling (e.g. air, bulk PCB). (if checked, skip temperatures)			
If no cooler: Observed/Adjusted Temp (°C):/ Thermometer/IR Gun:			_
Cooler Temp (°C) #1:/#2:/#3:/#4:/#5:/#6:			
Section 3b: Microbiology Samples	mples sub	mitted (skip 3b)
☐ Within temp range 0.0 - 10.0°C or received on ice directly from field.			
☐ Adequate headspace for microbiology analysis.			
Section 3c: Air Samples		mitted (skip 3c)
	ther		
Section 4: Containers / Labels / Samples	YES	NO	N/A
1) Were custody papers present, filled properly, and legible?	X		
2) Is the sampler's name present on the CoC?	X		
3) Were containers received in good condition (unbroken / unopened / uncompromised)?	х		
4) Were the samples bagged? (required for microbiology samples; recommended for soil samples)			x
5) Were all of, and only, the correct samples received?	x		
6) Are sample labels present, legible, and in agreement with the CoC?	x		
7) Does the container count match the CoC?	x		
8) Was sufficient sample volume / mass received for the analyses requested?	x		
9) Were samples received in proper containers for the analyses requested?	X		
10) Were samples received with > 1/2 holding time remaining?	x		
11) Are samples properly preserved as indicated by CoC / labels?	х		
12) Unpreserved VOAs received - If necessary, was the hold time changed in LIMS?			x
13) Are VOA vials free from headspace/bubbles > 6mm?			x
Section 5: Explanations / Comments	☐ PM n	otified	
<u> </u>			
(:d1)			
Date Logged 12/16/24 By (print) Tris Kelly (sign) (sign)			_
Date Labeled 12/16/24 By (print) Tris Kelly (sign) (sign)			_

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB02-14D-R2 **Batch#:** 358120

Lab ID: 522442-001 **Sampled:** 12/16/24 14:03 **Analysis:** EPA TO-15 SIM

Prep: METHOD

Matrix: Air Received: 12/16/24 Analyst: OHD

Diln Fac: 1.000 **Analyzed:** 12/18/24 02:12

Units (M) ug/m3
ua/m3
ug/m3
ug/m3 ug/m3
ug/m3
ug/m3 ug/m3
ug/m3

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Chem. Catalyst Environmental Solutions		Location. Walliut blull Workplan				
522442-001 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	800	10	pptv	3.5	0.043	ug/m3
522442-001 Surrogate			%REC	Limits	Units (M)	
Bromofluorobenzene			96	60-140	ug	g/m3

Legend

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB03-14D-R2 **Batch#:** 358299

Lab ID: 522442-002 **Sampled:** 12/16/24 14:10 **Analysis:** EPA TO-15 SIM

Prep: METHOD

Matrix: Air Received: 12/16/24 Analyst: OHD

Diln Fac: 1.000 **Analyzed:** 12/18/24 12:27

Freon 12 440 10 pptv 2.2 0.049 Chloromethane 550 100 pptv 1.1 0.21 Freon 114 15 10 pptv 0.10 0.070 Vinyl Chloride ND 10 pptv ND 0.026 Bromomethane 40 10 pptv ND 0.026 Chloroethane ND 10 pptv ND 0.026 Vinyl bromide ND 10 pptv ND 0.026 Vinyl bromide ND 10 pptv ND 0.026 Vinyl bromide ND 10 pptv ND 0.044 Trichlorofide ND 10 pptv ND 0.044 Trichloroethane ND 10 pptv ND 0.040 Methylene Chloride 270 20 pptv ND 0.040 Methylene Chloride 270 20 pptv ND 0.077 <t< th=""><th>ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3</th></t<>	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3
Chloromethane 550 100 pptv 1.1 0.21 Freon 114 15 10 pptv 0.10 0.070 Vinyl Chloride ND 10 pptv ND 0.026 Bromomethane 40 10 pptv ND 0.039 Chloroethane ND 10 pptv ND 0.026 Vinyl bromide ND 10 pptv ND 0.026 Vinyl bromide ND 10 pptv ND 0.044 Trichlorofluoromethane 190 10 pptv ND 0.044 Methylene Chloride 270 20 pptv ND 0.040 Methylene Chloride ND 10 pptv ND 0.040	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3
Freon 114 15 10 pptv 0.10 0.070 Vinyl Chloride ND 10 pptv ND 0.026 Bromomethane 40 10 pptv ND 0.039 Chloroethane ND 10 pptv ND 0.026 Vinyl bromide ND 10 pptv ND 0.044 Trichlorofluoromethane 190 10 pptv ND 0.040 Trichloroethene ND 10 pptv ND 0.040 Methylene Chloride 270 20 pptv ND 0.040 J.1-Dichloroethane ND 10 pptv ND 0.040<	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3
Vinyl Chloride ND 10 pptv ND 0.026 Bromomethane 40 10 pptv 0.16 0.039 Chloroethane ND 10 pptv ND 0.026 Vinyl bromide ND 10 pptv ND 0.044 Trichlorofluoromethane 190 10 pptv ND 0.044 Trichloroethane ND 10 pptv ND 0.040 Methylene Chloride 270 20 pptv ND 0.040 Methylene Chloride 10 pptv ND 0.040 1,1-Dichloroethane ND 10 pptv ND 0.040 </td <td>ug/m3 ug/m3 ug/m3 ug/m3</td>	ug/m3 ug/m3 ug/m3 ug/m3
Bromomethane 40 10 pptv 0.16 0.039 Chloroethane ND 10 pptv ND 0.026 Vinyl bromide ND 10 pptv ND 0.044 Trichloroffluoromethane 190 10 pptv ND 0.044 Trichloroethene ND 10 pptv ND 0.040 Methylene Chloride 270 20 pptv ND 0.040 Methylene Chloride 270 20 pptv 0.93 0.069 Freon 113 61 10 pptv 0.93 0.069 Freon 113 61 10 pptv ND 0.077 trans-1,2-Dichloroethane ND 10 pptv ND 0.040 1,1-Dichloroethane ND 10 pptv ND 0.040 Chloroform 40 10 pptv ND 0.040 Chloroform 40 10 pptv ND 0.055 <td>ug/m3 ug/m3 ug/m3</td>	ug/m3 ug/m3 ug/m3
Chloroethane ND 10 pptv ND 0.026 Vinyl bromide ND 10 pptv ND 0.044 Trichlorofluoromethane 190 10 pptv 1.1 0.056 1,1-Dichloroethene ND 10 pptv ND 0.040 Methylene Chloride 270 20 pptv 0.93 0.069 Freon 113 61 10 pptv 0.47 0.077 trans-1,2-Dichloroethene ND 10 pptv ND 0.040 1,1-Dichloroethane ND 10 pptv ND 0.040 1,1-Dichloroethane ND 10 pptv ND 0.040 1,1-Dichloroethane ND 10 pptv ND 0.040 Chloroform 40 10 pptv ND 0.040 1,2-Dichloroethane 24 10 pptv ND 0.055 Benzene 540 10 pptv ND 0.053<	ug/m3 ug/m3
Vinyl bromide ND 10 pptv ND 0.044 Trichlorofluoromethane 190 10 pptv 1.1 0.056 1,1-Dichloroethene ND 10 pptv ND 0.040 Methylene Chloride 270 20 pptv 0.93 0.069 Freon 113 61 10 pptv 0.47 0.077 trans-1,2-Dichloroethene ND 10 pptv ND 0.040 1,1-Dichloroethane ND 10 pptv ND 0.040 cis-1,2-Dichloroethane ND 10 pptv ND 0.040 Chloroform 40 10 pptv ND 0.040 Chloroforbane 24 10 pptv ND 0.040 1,1-Trichloroethane ND 10 pptv ND 0.055 Benzene 540 10 pptv ND 0.045 Carbon Tetrachloride 72 10 pptv ND <t< td=""><td>ug/m3</td></t<>	ug/m3
Trichlorofluoromethane 190 10 pptv 1.1 0.056 1,1-Dichloroethene ND 10 pptv ND 0.040 Methylene Chloride 270 20 pptv 0.93 0.069 Freon 113 61 10 pptv 0.47 0.077 trans-1,2-Dichloroethene ND 10 pptv ND 0.040 1,1-Dichloroethane ND 10 pptv ND 0.040 cis-1,2-Dichloroethene ND 10 pptv ND 0.040 Chloroform 40 10 pptv ND 0.040 Chloroforme 40 10 pptv 0.20 0.049 1,2-Dichloroethane ND 10 pptv ND 0.097 0.040 1,1,1-Trichloroethane ND 10 pptv ND 0.055 ND 0.055 ND 0.055 ND 0.045 0.063 0.063 0.063 0.063 0.063 0.064	_
1,1-Dichloroethene ND 10 pptv ND 0.040 Methylene Chloride 270 20 pptv 0.93 0.069 Freon 113 61 10 pptv 0.47 0.077 trans-1,2-Dichloroethene ND 10 pptv ND 0.040 1,1-Dichloroethane ND 10 pptv ND 0.040 cis-1,2-Dichloroethene ND 10 pptv ND 0.040 Chloroform 40 10 pptv ND 0.040 Chloroform 40 10 pptv 0.020 0.049 1,2-Dichloroethane ND 10 pptv ND 0.040 1,1,1-Trichloroethane ND 10 pptv ND 0.055 Benzene 540 10 pptv ND 0.032 Carbon Tetrachloride 72 10 pptv ND 0.046 Bromodichloromethane ND 10 pptv ND	ug/m3
Methylene Chloride 270 20 pptv 0.93 0.069 Freon 113 61 10 pptv 0.47 0.077 trans-1,2-Dichloroethene ND 10 pptv ND 0.040 1,1-Dichloroethane ND 10 pptv ND 0.040 cis-1,2-Dichloroethane ND 10 pptv ND 0.040 Chloroform 40 10 pptv ND 0.040 Chloroform 40 10 pptv 0.020 0.049 1,2-Dichloroethane ND 10 pptv ND 0.055 Benzene 540 10 pptv ND 0.032 Carbon Tetrachloride 72 10 pptv ND 0.063 1,2-Dichloropropane ND 10 pptv ND 0.067 Trichloroethane ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND <	ug/m3
Freon 113 61 10 pptv 0.47 0.077 trans-1,2-Dichloroethene ND 10 pptv ND 0.040 1,1-Dichloroethane ND 10 pptv ND 0.040 cis-1,2-Dichloroethene ND 10 pptv ND 0.040 Chloroform 40 10 pptv 0.020 0.049 1,2-Dichloroethane ND 10 pptv ND 0.055 Benzene 540 10 pptv ND 0.032 Carbon Tetrachloride 72 10 pptv ND 0.063 1,2-Dichloropropane ND 10 pptv ND 0.046 Bromodichloromethane ND 10 pptv ND 0.067 Trichloroethene ND 10 pptv ND 0.045 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloroethane ND 10 pptv ND </td <td>ug/m3</td>	ug/m3
1,1-Dichloroethane ND 10 pptv ND 0.040 cis-1,2-Dichloroethene ND 10 pptv ND 0.040 Chloroform 40 10 pptv 0.20 0.049 1,2-Dichloroethane 24 10 pptv ND 0.097 0.040 1,1,1-Trichloroethane ND 10 pptv ND 0.055 Benzene 540 10 pptv ND 0.032 Carbon Tetrachloride 72 10 pptv ND 0.063 1,2-Dichloropropane ND 10 pptv ND 0.046 Bromodichloromethane ND 10 pptv ND 0.067 Trichloroethene ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10	ug/m3
cis-1,2-Dichloroethene ND 10 pptv ND 0.040 Chloroform 40 10 pptv 0.20 0.049 1,2-Dichloroethane 24 10 pptv 0.097 0.040 1,1,1-Trichloroethane ND 10 pptv ND 0.055 Benzene 540 10 pptv 1.7 0.032 Carbon Tetrachloride 72 10 pptv 0.45 0.063 1,2-Dichloropropane ND 10 pptv ND 0.046 Bromodichloromethane ND 10 pptv ND 0.067 Trichloroethene ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
Chloroform 40 10 pptv 0.20 0.049 1,2-Dichloroethane 24 10 pptv 0.097 0.040 1,1,1-Trichloroethane ND 10 pptv ND 0.055 Benzene 540 10 pptv 1.7 0.032 Carbon Tetrachloride 72 10 pptv 0.45 0.063 1,2-Dichloropropane ND 10 pptv ND 0.046 Bromodichloromethane ND 10 pptv ND 0.067 Trichloroethene ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
1,2-Dichloroethane 24 10 pptv 0.097 0.040 1,1,1-Trichloroethane ND 10 pptv ND 0.055 Benzene 540 10 pptv 1.7 0.032 Carbon Tetrachloride 72 10 pptv 0.45 0.063 1,2-Dichloropropane ND 10 pptv ND 0.046 Bromodichloromethane ND 10 pptv ND 0.067 Trichloroethene ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
1,1,1-Trichloroethane ND 10 pptv ND 0.055 Benzene 540 10 pptv 1.7 0.032 Carbon Tetrachloride 72 10 pptv 0.45 0.063 1,2-Dichloropropane ND 10 pptv ND 0.046 Bromodichloromethane ND 10 pptv ND 0.067 Trichloroethene ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
Benzene 540 10 pptv 1.7 0.032 Carbon Tetrachloride 72 10 pptv 0.45 0.063 1,2-Dichloropropane ND 10 pptv ND 0.046 Bromodichloromethane ND 10 pptv ND 0.067 Trichloroethene ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
Carbon Tetrachloride 72 10 pptv 0.45 0.063 1,2-Dichloropropane ND 10 pptv ND 0.046 Bromodichloromethane ND 10 pptv ND 0.067 Trichloroethene ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
1,2-Dichloropropane ND 10 pptv ND 0.046 Bromodichloromethane ND 10 pptv ND 0.067 Trichloroethene ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
Bromodichloromethane ND 10 pptv ND 0.067 Trichloroethene ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
Trichloroethene ND 10 pptv ND 0.054 cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
cis-1,3-Dichloropropene ND 10 pptv ND 0.045 trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
trans-1,3-Dichloropropene ND 10 pptv ND 0.045 1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
1,1,2-Trichloroethane ND 10 pptv ND 0.055	ug/m3
	ug/m3
10110ma 10 note 20 000	ug/m3
· ·	ug/m3 ug/m3
	ug/m3
, <u> </u>	ug/m3
• •	ug/m3
	ug/m3
·	ug/m3
	ug/m3
• • • • • • • • • • • • • • • • • • • •	ug/m3
· ·	ug/m3
	ug/m3
	ug/m3
	ug/m3
	ug/m3
1,3-Dichlorobenzene ND 10 pptv ND 0.060	ug/m3
	ug/m3
	ug/m3
	-
	ug/m3
• •	ug/m3 ug/m3
Naphthalene 21 10 pptv 0.11 0.052	ug/m3

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Onone: Odlaryot Environm		Location: Wallat Blan Workplan					
522442-002 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)	
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3	
Xylene (total)	740	10	pptv	3.2	0.043	ug/m3	
522442-002 Surrogate			%REC	Limits	Uni	ts (M)	
Bromofluorobenzene			102	60-140	u(g/m3	

Legend

ND: Not Detected
RL (V): Reporting Limit
Result (M): Result in mass units
Result (V): Result in volume units

Lab ID: 522442-003

Enthalpy Analytical - Orange Analytical Report

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB05-14D-R2 **Batch#:** 358120

 Batch#:
 358120
 Prep:
 METHOD

 Sampled:
 12/16/24 14:15
 Analysis:
 EPA TO-15 SIM

Matrix: Air Received: 12/16/24 Analyst: OHD

Diln Fac: 1.100 **Analyzed:** 12/18/24 03:00

500440 002 Amelysts	Decute AA	DI AA	Heite ///	Decult /M/\	DI /AAN	limite /MA
522442-003 Analyte	Result (V)	RL (V)	Units (V)	Result (M) 2.2	RL (M) 0.054	Units (M)
Freon 12 Chloromethane	440 540	11 110	pptv	2.2 1.1	0.054	ug/m3 ug/m3
Freon 114	15	110	pptv	0.10	0.23	ug/m3
Vinyl Chloride	ND	11	pptv pptv	ND	0.077	ug/m3
Bromomethane	39	11	pptv	0.15	0.020	ug/m3
Chloroethane	ND	11	pptv	ND	0.043	ug/m3
Vinyl bromide	ND	11	pptv	ND	0.023	ug/m3
Trichlorofluoromethane	190	11	pptv	1.1	0.062	ug/m3
1,1-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
Methylene Chloride	260	22	pptv	0.91	0.076	ug/m3
Freon 113	61	11	pptv	0.47	0.084	ug/m3
trans-1,2-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
1,1-Dichloroethane	ND	11	pptv	ND	0.045	ug/m3
cis-1,2-Dichloroethene	ND	11	pptv	ND	0.044	ug/m3
Chloroform	39	11	pptv	0.19	0.054	ug/m3
1,2-Dichloroethane	24	11	pptv	0.096	0.045	ug/m3
1,1,1-Trichloroethane	ND	11	pptv	ND	0.060	ug/m3
Benzene	550	11	pptv	1.7	0.035	ug/m3
Carbon Tetrachloride	71	11	pptv	0.45	0.069	ug/m3
1,2-Dichloropropane	ND	11	pptv	ND	0.051	ug/m3
Bromodichloromethane	ND	11	pptv	ND	0.074	ug/m3
Trichloroethene	ND	11	pptv	ND	0.059	ug/m3
cis-1,3-Dichloropropene	ND	11	pptv	ND	0.050	ug/m3
trans-1,3-Dichloropropene	ND	11	pptv	ND	0.050	ug/m3
1,1,2-Trichloroethane	ND	11	pptv	ND	0.060	ug/m3
Toluene	890	11	pptv	3.4	0.041	ug/m3
Dibromochloromethane	ND	11	pptv	ND	0.094	ug/m3
1,2-Dibromoethane	ND	11	pptv	ND	0.085	ug/m3
Tetrachloroethene Chlorobenzene	17 ND	11 11	pptv	0.12 ND	0.075 0.051	ug/m3 ug/m3
Ethylbenzene	170	11	pptv pptv	0.72	0.031	ug/m3
m,p-Xylenes	520	11	pptv	2.3	0.048	ug/m3
Bromoform	ND	11	pptv	ND	0.11	ug/m3
Styrene	110	11	pptv	0.47	0.047	ug/m3
o-Xylene	200	11	pptv	0.87	0.048	ug/m3
2-Chlorotoluene	ND	11	pptv	ND	0.057	ug/m3
1,3,5-Trimethylbenzene	68	11	pptv	0.33	0.054	ug/m3
1,2,4-Trimethylbenzene	260	11	pptv	1.3	0.054	ug/m3
Benzyl chloride	ND	11	pptv	ND	0.057	ug/m3
1,3-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,4-Dichlorobenzene	15	11	pptv	0.090	0.066	ug/m3
1,2-Dichlorobenzene	ND	11	pptv	ND	0.066	ug/m3
1,2,4-Trichlorobenzene	ND	11	pptv	ND	0.082	ug/m3
1,1,2,2-Tetrachloroethane	ND	11	pptv	ND	0.076	ug/m3
1,1,1,2-Tetrachloroethane	ND	11	pptv	ND	0.076	ug/m3
Naphthalene	31	11	pptv	0.16	0.058	ug/m3

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Ciletti. Catalyst Environmental	Location. Walliut Blull Workplan					
522442-003 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Hexachlorobutadiene	ND	11	pptv	ND	0.12	ug/m3
Xylene (total)	720	11	pptv	3.1	0.048	ug/m3
522442-003 Surrogate			%REC	Limits	Uni	ts (M)
Bromofluorobenzene			100	60-140	ug	ı/m3

Legend

ND: Not Detected
RL (V): Reporting Limit
Result (M): Result in mass units
Result (V): Result in volume units

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Field ID: WB10-14D-R2 **Batch#:** 358120

Lab ID: 522442-004 **Sampled:** 12/16/24 14:24 **Analysis:** EPA TO-15 SIM

Prep: METHOD

Matrix: Air Received: 12/16/24 Analyst: OHD

Diln Fac: 1.000 **Analyzed:** 12/18/24 03:49

522442-004 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	440	10		2.2	0.049	ug/m3
Chloromethane	550	100	pptv pptv	1.1	0.049	ug/m3
Freon 114	15	100	pptv	0.10	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	37	10	pptv	0.15	0.039	ug/m3
Chloroethane	ND	10	pptv	ND	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	190	10	pptv	1.1	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	250	20	pptv	0.87	0.069	ug/m3
Freon 113	60	10	pptv	0.46	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	41	10	pptv	0.20	0.049	ug/m3
1,2-Dichloroethane	25	10	pptv	0.10	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	610	10	pptv	1.9	0.032	ug/m3
Carbon Tetrachloride	71	10	pptv	0.45	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Trichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene	ND	10 10	pptv	ND ND	0.045	ug/m3
trans-1,3-Dichloropropene	ND ND	10	pptv		0.045	ug/m3
1,1,2-Trichloroethane Toluene	850	10	pptv	ND 3.2	0.055 0.038	ug/m3 ug/m3
Dibromochloromethane	ND	10	pptv pptv	ND	0.038	ug/m3
1,2-Dibromoethane	ND ND	10	pptv	ND	0.003	ug/m3
Tetrachloroethene	17	10	pptv	0.12	0.068	ug/m3
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3
Ethylbenzene	190	10	pptv	0.84	0.043	ug/m3
m,p-Xylenes	570	10	pptv	2.5	0.043	ug/m3
Bromoform	ND	10	pptv	ND	0.10	ug/m3
Styrene	85	10	pptv	0.36	0.043	ug/m3
o-Xylene	200	10	pptv	0.87	0.043	ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
1,3,5-Trimethylbenzene	62	10	pptv	0.30	0.049	ug/m3
1,2,4-Trimethylbenzene	220	10	pptv	1.1	0.049	ug/m3
Benzyl chloride	ND	10	pptv	ND	0.052	ug/m3
1,3-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND	10	pptv	ND	0.074	ug/m3
1,1,2,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND	0.069	ug/m3
Naphthalene	11	10	pptv	0.060	0.052	ug/m3

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Onomic Garanyor Environi	The Catalyst Environmental Columnia				Location: Wallat Blair Workplan				
522442-004 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)			
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3			
Xylene (total)	770	10	pptv	3.3	0.043	ug/m3			
522442-004 Surrogate			%REC	Limits	Uni	ts (M)			
Bromofluorobenzene			96	60-140	uç	g/m3			

Legend

ND: Not Detected
RL (V): Reporting Limit
Result (M): Result in mass units
Result (V): Result in volume units

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Type: BS Diln Fac: 1.000 Prep: METHOD

Lab ID: QC1212995 **Batch#:** 358120 **Analysis:** EPA TO-15 SIM

Matrix: Air Analyzed: 12/17/24 09:37 Analyst: OHD

Matrix: 7th	Analy200: 12/11/2+ 00:07				
QC1212995 Analyte	Spiked	Result (V)	Units (V)	%REC	Limits
Freon 12	100.0	100.6	pptv	101	70-130
Chloromethane	100.0	103.1	pptv	103	70-130
Freon 114	100.0	101.4	pptv	101	70-130
Vinyl Chloride	100.0	102.1	pptv	102	70-130
Bromomethane	100.0	100.7	pptv	101	70-130
Chloroethane	100.0	98.78	pptv	99	70-130
Vinyl bromide	100.0	103.4	pptv	103	70-130
Trichlorofluoromethane	100.0	100.9	pptv	101	70-130
1,1-Dichloroethene	100.0	104.4	pptv	104	70-130
Methylene Chloride	100.0	100.7	pptv	101	70-130
Freon 113	100.0	101.5	pptv	102	70-130
trans-1,2-Dichloroethene	100.0	101.7	pptv	102	70-130
1,1-Dichloroethane	100.0	101.2	pptv	101	70-130
cis-1,2-Dichloroethene	100.0	101.5	pptv	102	70-130
Chloroform	100.0	101.0	pptv	101	70-130
1,2-Dichloroethane	100.0	100.2	pptv	100	70-130
1,1,1-Trichloroethane	100.0	99.82	pptv	100	70-130
Benzene	100.0	96.86	pptv	97	70-130
Carbon Tetrachloride	100.0	98.68	pptv	99	70-130
1,2-Dichloropropane	100.0	101.8	pptv	102	70-130
Bromodichloromethane	100.0	98.05	pptv	98	70-130
Trichloroethene	100.0	101.5	pptv	102	70-130
cis-1,3-Dichloropropene	100.0	101.3	pptv	101	70-130
trans-1,3-Dichloropropene	100.0	101.2	pptv	101	70-130
1,1,2-Trichloroethane	100.0	100.7	pptv	101	70-130
Toluene	100.0	88.25	pptv	88	70-130
Dibromochloromethane	100.0	96.65	pptv	97	70-130
1,2-Dibromoethane	100.0	98.05	pptv	98	70-130
Tetrachloroethene	100.0	103.7	pptv	104	70-130
Chlorobenzene	100.0	100.5	pptv	101	70-130
Ethylbenzene	100.0	97.08	pptv	97	70-130
m,p-Xylenes	200.0	191.6	pptv	96	70-130
Bromoform	100.0	96.20	pptv	96	70-130
Styrene	100.0	114.0	pptv	114	70-130
o-Xylene	100.0	97.59	pptv	98	70-130
2-Chlorotoluene	100.0	98.76	pptv	99	70-130
1,3,5-Trimethylbenzene	100.0	126.4	pptv	126	70-130
1,2,4-Trimethylbenzene	100.0	110.1	pptv	110	70-130
Benzyl chloride	100.0	90.91	pptv	91	70-130
1,3-Dichlorobenzene	100.0	100.7	pptv	101	70-130
1,4-Dichlorobenzene	100.0	97.99	pptv	98	70-130
1,2-Dichlorobenzene	100.0	97.58	pptv	98	70-130
1,2,4-Trichlorobenzene	100.0	85.15	pptv	85	70-130
1,1,2,2-Tetrachloroethane	100.0	100.7	pptv	101	70-130
1,1,1,2-Tetrachloroethane	100.0	98.44	pptv	98	70-130
Naphthalene	100.0	79.44	pptv	79	70-130
Hexachlorobutadiene	100.0	90.53	pptv	91	70-130
			I- II	•	

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

QC1212995 Surrogate%RECLimitsBromofluorobenzene10470-130

Type: BSD Diln Fac: 1.000 Prep: METHOD

Lab ID: QC1212996 **Batch#:** 358120 **Analysis:** EPA TO-15 SIM

Matrix: Air Analyzed: 12/17/24 10:20 Analyst: OHD

Chloromethane 100.0 105.4 pptv 103 70-130 2 25 Freon 114 100.0 103.2 pptv 103 70-130 2 25 Freon 114 100.0 104.5 pptv 105 70-130 2 25 Freon methane 100.0 104.5 pptv 105 70-130 2 25 Freon methane 100.0 104.5 pptv 104 70-130 3 25 Freon methane 100.0 104.5 pptv 104 70-130 2 25 Freon 114 100.0 104.5 pptv 104 70-130 2 25 Freon 115 100.0 105.6 pptv 106 70-130 2 25 Freon 116 100.0 105.6 pptv 106 70-130 2 25 Freon 117 100.0 106.4 pptv 106 70-130 2 25 Freon 118 100.0 102.5 pptv 107 70-130 2 25 Freon 113 100.0 102.5 pptv 103 70-130 2 25 Freon 113 100.0 103.1 pptv 103 70-130 2 25 Freon 113 100.0 103.4 pptv 103 70-130 2 25 Freon 112 100.0 103.4 pptv 103 70-130 2 25 Freon 112 100.0 103.4 pptv 103 70-130 2 25 Freon 113 100.0 103.4 pptv 103 70-130 2 25 Freon 12 100.0 103.4 pptv 103 70-130 2 25 Freon 12 100.0 103.4 pptv 103 70-130 2 25 Freon 13 100.0 103.4 pptv 103 70-130 2 25 Freon 140 100.0 103.4 pptv 103 70-130 2 25 Freon 140 100.0 103.4 pptv 103 70-130 2 25 Freon 140 100.0 103.4 pptv 103 70-130 2 25 Freon 140 100.0 103.4 pptv 103 70-130 2 25 Freon 140 100.0 103.4 pptv 103 70-130 2 25 Freon 140 100.0 103.4 pptv 103 70-130 2 25 Freon 140 100.0 103.0 pptv 103 70-130 2 25 Freon 140 100.0 103.0 pptv 103 70-130 2 25 Freon 140 100.0 103.0 pptv 103 70-130 2 25 Freon 140 100.0 103.0 pptv 104 70-130 3 25 Freon 140 100.0 100.0 pptv 100 70-130 3 25 Freon 140 100.0 100.0 pptv 100 70-130 3 25 Freon 140 100.0 100.0 pptv 100 70-130 3 25 Freon 140 100.0 100.0 pptv 100 70-130 3 25 Freon 140 100.0 100.0	QC1212996 Analyte	Spiked	Result (V)	Units (V)	%REC	Limits	RPD	Lim
Freen 114	Freon 12			pptv	103		2	
Vinyl Chloride	Chloromethane	100.0	105.4	pptv	105	70-130	2	25
Bromomethane	Freon 114			pptv	103			
Chlorosthane 100.0 101.2 pptv 101 70-130 2 25 171.0 pptv 101 70-130 2 25 171.1 pptv 101 70-130 2 25 171.2 pptv 101 70-130 3 25 17	Vinyl Chloride	100.0	104.5	pptv	105	70-130	2	25
Vinyl bromide 100.0 105.6 pptv pptv 106 70-130 2 25 Trichlorofluoromethane 100.0 106.4 pptv 103 70-130 2 25 Methylene Chloride 100.0 106.5 pptv 102 70-130 2 25 Methylene Chloride 100.0 103.5 pptv 102 70-130 2 25 Treon 113 100.0 103.5 pptv 103 70-130 2 25 trans-1,2-Dichloroethene 100.0 103.1 pptv 103 70-130 2 25 Chloroform 100.0 103.1 pptv 103 70-130 2 25 Chloroform 100.0 103.0 pptv 103 70-130 2 25 Chloroform 100.0 103.0 pptv 103 70-130 2 25 Chloroform 100.0 101.4 pptv 101 70-130 2 25 Chloroform 100.0 101.4 pptv 101 70-130 2	Bromomethane	100.0	104.0	pptv	104	70-130	3	25
Trichlorofluoromethane	Chloroethane	100.0	101.2	pptv	101	70-130	2	25
1,1-Dichloroethene 100.0 106.4 pptv 106 70-130 2 25 Methylene Chloride 100.0 102.5 pptv 102 70-130 2 25 Freon 113 100.0 103.5 pptv 103 70-130 2 25 Irean-1,2-Dichloroethene 100.0 103.4 pptv 103 70-130 2 25 1,1-Dichloroethane 100.0 103.4 pptv 103 70-130 2 25 Chloroform 100.0 103.4 pptv 103 70-130 2 25 Chloroform 100.0 103.0 pptv 103 70-130 2 25 Chloroform 100.0 102.6 pptv 103 70-130 2 25 Chloroform 100.0 101.4 pptv 101 70-130 2 25 Benzene 100.0 101.4 pptv 101 70-130 2 25 Carbon Tetrachloride 100.0 104.8 pptv 105 70-130 3	Vinyl bromide	100.0	105.6	pptv	106	70-130	2	25
Methylene Chloride 100.0 102.5 pptv 102 70-130 2 25 Freon I13 100.0 103.5 pptv 103 70-130 2 25 trans-1,2-Dichloroethene 100.0 103.1 pptv 103 70-130 2 25 1,1-Dichloroethene 100.0 103.1 pptv 103 70-130 2 25 Chloroform 100.0 103.4 pptv 103 70-130 2 25 Chloroform 100.0 103.0 pptv 103 70-130 2 25 Chloroform 100.0 101.4 pptv 103 70-130 2 25 Chloroform 100.0 101.4 pptv 101 70-130 2 25 Benzene 100.0 98.66 pptv 101 70-130 2 25 Benzene 100.0 104.8 pptv 100 70-130 3 25 Tarschloro	Trichlorofluoromethane	100.0	103.1	pptv	103	70-130	2	25
Freon 113 100.0 103.5 100.0 103.4 100.0 103.4 100.0 103.1 100.0 103.1 100.0 103.1 100.0 103.1 100.0 103.1 100.0 103.1 100.0 103.1 100.0 103.1 100.0 103.1 100.0 103.1 100.0 103.0 100.0 103.0 100.0 10	1,1-Dichloroethene	100.0	106.4	pptv	106	70-130	2	25
trans-1,2-Dichloroethene	Methylene Chloride	100.0	102.5	pptv	102	70-130	2	25
1,1-Dichloroethane 100.0 103.1 pptv 103 70-130 2 25 cis-1,2-Dichloroethene 100.0 103.4 pptv 103 70-130 2 25 Chloroform 100.0 103.0 pptv 103 70-130 2 25 1,2-Dichloroethane 100.0 101.4 pptv 101 70-130 2 25 1,1,1-Trichloroethane 100.0 101.4 pptv 101 70-130 2 25 Benzene 100.0 98.66 pptv 100 70-130 2 25 Carbon Tetrachloride 100.0 100.5 pptv 100 70-130 2 25 Garbon Tetrachloride 100.0 104.8 pptv 105 70-130 3 25 Bromodichloromethane 100.0 104.8 pptv 101 70-130 3 25 Trichloroethane 100.0 103.9 pptv 104 70-130 3 25 Trichloroethane 100.0 103.9 pptv 104 70	Freon 113	100.0	103.5	pptv	103	70-130	2	25
cis-1,2-Dichloroethene 100.0 103.4 pptv 103 70-130 2 25 Chloroform 100.0 103.0 pptv 103 70-130 2 25 1,2-Dichloroethane 100.0 101.4 pptv 103 70-130 2 25 1,1-Trichloroethane 100.0 101.4 pptv 101 70-130 2 25 Benzene 100.0 98.66 pptv 199 70-130 2 25 Carbon Tetrachloride 100.0 100.5 pptv 105 70-130 2 25 L-2-Dichloropropane 100.0 100.9 pptv 105 70-130 3 25 Bromodichloromethane 100.0 100.9 pptv 104 70-130 3 25 Trichloroethane 100.0 103.9 pptv 104 70-130 3 25 Tolulene 100.0 103.3 pptv 104 70-130 3 25 </td <td>trans-1,2-Dichloroethene</td> <td>100.0</td> <td>103.4</td> <td>pptv</td> <td>103</td> <td>70-130</td> <td>2</td> <td>25</td>	trans-1,2-Dichloroethene	100.0	103.4	pptv	103	70-130	2	25
Chloroform 100.0 103.0 pptv 103 70-130 2 25 1,2-Dichloroethane 100.0 102.6 pptv 103 70-130 2 25 1,1-17richloroethane 100.0 101.4 pptv 101 70-130 2 25 Benzene 100.0 98.66 pptv 99 70-130 2 25 Carbon Tetrachloride 100.0 100.5 pptv 100 70-130 2 25 L2-Dichloropropane 100.0 104.8 pptv 105 70-130 3 25 Bromodichloromethane 100.0 104.1 pptv 104 70-130 3 25 Trichloroethane 100.0 103.9 pptv 104 70-130 3 25 Trichloroethane 100.0 103.3 pptv 104 70-130 3 25 Toluene 100.0 103.3 pptv 103 70-130 3 25 <	1,1-Dichloroethane	100.0	103.1	pptv	103	70-130	2	25
1,2-Dichloroethane 100.0 102.6 pptv 103 70-130 2 25 1,1,1-Trichloroethane 100.0 101.4 pptv 101 70-130 2 25 Benzene 100.0 98.66 pptv 99 70-130 2 25 Carbon Tetrachloride 100.0 100.5 pptv 105 70-130 2 25 Li,2-Dichloropropane 100.0 104.8 pptv 105 70-130 3 25 Bromodichloromethane 100.0 104.1 pptv 104 70-130 3 25 Bromodichloromethane 100.0 103.9 pptv 104 70-130 3 25 Cis-1,3-Dichloropropene 100.0 104.4 pptv 104 70-130 3 25 trans-1,3-Dichloropropene 100.0 104.4 pptv 104 70-130 3 25 Tolluene 100.0 103.3 pptv 103 70-130 3 25 Tolluene 100.0 99.34 pptv 90	cis-1,2-Dichloroethene	100.0	103.4	pptv	103	70-130	2	25
1,1,1-Trichloroethane 100.0 101.4 pptv 101 70-130 2 25 Benzene 100.0 98.66 pptv 99 70-130 2 25 Carbon Tetrachloride 100.0 100.5 pptv 105 70-130 2 25 1,2-Dichloropropane 100.0 104.8 pptv 105 70-130 3 25 Bromodichloromethane 100.0 100.9 pptv 101 70-130 3 25 Trichloroethene 100.0 104.1 pptv 104 70-130 3 25 Trichloroethene 100.0 104.1 pptv 104 70-130 3 25 trans-1,3-Dichloropropene 100.0 104.4 pptv 104 70-130 3 25 trans-1,2-Trichloroethane 100.0 103.3 pptv 104 70-130 3 25 Toluene 100.0 90.34 pptv 90 70-130 3 25 Toluene 100.0 99.34 pptv 100 70-130 <td>Chloroform</td> <td>100.0</td> <td>103.0</td> <td>pptv</td> <td>103</td> <td>70-130</td> <td>2</td> <td>25</td>	Chloroform	100.0	103.0	pptv	103	70-130	2	25
Benzene 100.0 98.66 pptv 99 70-130 2 25 Carbon Tetrachloride 100.0 100.5 pptv 100 70-130 2 25 L2-Dichloropropane 100.0 104.8 pptv 105 70-130 3 25 Bromodichloromethane 100.0 104.9 pptv 101 70-130 3 25 Trichloroethane 100.0 104.1 pptv 104 70-130 3 25 cis-1,3-Dichloropropene 100.0 103.9 pptv 104 70-130 3 25 trans-1,3-Dichloropropene 100.0 103.3 pptv 104 70-130 3 25 Toluene 100.0 90.34 pptv 103 70-130 3 25 Toluene 100.0 99.56 pptv 100 70-130 3 25 Toluene 100.0 101.1 pptv 90 70-130 3 25 <tr< td=""><td>1,2-Dichloroethane</td><td>100.0</td><td>102.6</td><td>pptv</td><td>103</td><td>70-130</td><td>2</td><td>25</td></tr<>	1,2-Dichloroethane	100.0	102.6	pptv	103	70-130	2	25
Carbon Tetrachloride 100.0 100.5 pptv 100 70-130 2 25 1,2-Dichloropropane 100.0 104.8 pptv 105 70-130 3 25 Bromodichloromethane 100.0 100.9 pptv 101 70-130 3 25 Trichloroethene 100.0 104.1 pptv 104 70-130 3 25 cis-1,3-Dichloropropene 100.0 103.9 pptv 104 70-130 3 25 trans-1,3-Dichloropropene 100.0 104.4 pptv 104 70-130 3 25 trans-1,3-Dichloropropene 100.0 103.3 pptv 103 70-130 3 25 Toluene 100.0 90.34 pptv 90 70-130 3 25 Dibromochloromethane 100.0 99.34 pptv 90 70-130 3 25 Tetrachloroethane 100.0 106.4 pptv 106 70-130 3<	1,1,1-Trichloroethane	100.0	101.4	pptv	101	70-130	2	25
1,2-Dichloropropane 100.0 104.8 pptv 105 70-130 3 25 Bromodichloromethane 100.0 100.9 pptv 101 70-130 3 25 Trichloroethene 100.0 104.1 pptv 104 70-130 3 25 cis-1,3-Dichloropropene 100.0 103.9 pptv 104 70-130 3 25 trans-1,3-Dichloropropene 100.0 104.4 pptv 104 70-130 3 25 1,1,2-Trichloroethane 100.0 103.3 pptv 103 70-130 3 25 Toluene 100.0 90.34 pptv 90 70-130 2 25 Dibromochloromethane 100.0 99.56 pptv 100 70-130 3 25 Tetrachloroethene 100.0 101.1 pptv 100 70-130 3 25 Tetrachloroethene 100.0 106.4 pptv 106 70-130 3 25 Ethylbenzene 100.0 103.8 pptv 104	Benzene	100.0	98.66	pptv	99	70-130	2	25
Bromodichloromethane 100.0 100.9 pptv 101 70-130 3 25 Trichloroethene 100.0 104.1 pptv 104 70-130 3 25 cis-1,3-Dichloropropene 100.0 103.9 pptv 104 70-130 3 25 trans-1,3-Dichloropropene 100.0 104.4 pptv 104 70-130 3 25 Toluene 100.0 103.3 pptv 103 70-130 3 25 Toluene 100.0 90.34 pptv 90 70-130 2 25 Dibromochloromethane 100.0 99.56 pptv 100 70-130 2 25 Dibromoethane 100.0 101.1 pptv 101 70-130 3 25 Tetrachloroethane 100.0 106.4 pptv 106 70-130 3 25 Tetrachloroethane 100.0 103.8 pptv 104 70-130 3 25	Carbon Tetrachloride	100.0	100.5	pptv	100	70-130	2	25
Trichloroethene 100.0 104.1 pptv 104 70-130 3 25 cis-1,3-Dichloropropene 100.0 103.9 pptv 104 70-130 3 25 trans-1,3-Dichloropropene 100.0 104.4 pptv 104 70-130 3 25 Toluene 100.0 103.3 pptv 103 70-130 3 25 Toluene 100.0 90.34 pptv 90 70-130 2 25 Dibromochloromethane 100.0 99.56 pptv 100 70-130 3 25 1,2-Dibromoethane 100.0 101.1 pptv 101 70-130 3 25 Tetrachloroethene 100.0 106.4 pptv 106 70-130 3 25 Chlorobenzene 100.0 103.8 pptv 104 70-130 3 25 Ethylbenzene 100.0 93.2 pptv 104 70-130 3 25	1,2-Dichloropropane	100.0	104.8	pptv	105	70-130	3	25
Trichloroethene 100.0 104.1 pptv 104 70-130 3 25 cis-1,3-Dichloropropene 100.0 103.9 pptv 104 70-130 3 25 trans-1,3-Dichloropropene 100.0 104.4 pptv 104 70-130 3 25 Toluene 100.0 90.34 pptv 90 70-130 3 25 Toluene 100.0 99.56 pptv 90 70-130 2 25 Dibromochloromethane 100.0 99.56 pptv 101 70-130 3 25 Tetrachloroethane 100.0 101.1 pptv 101 70-130 3 25 Tetrachloroethene 100.0 106.4 pptv 106 70-130 3 25 Ethylbenzene 100.0 103.8 pptv 104 70-130 3 25 Ethylbenzene 100.0 98.34 pptv 104 70-130 3 25	Bromodichloromethane	100.0	100.9	pptv	101	70-130	3	25
trans-1,3-Dichloropropene 100.0 104.4 pptv 104 70-130 3 25 1,1,2-Trichloroethane 100.0 103.3 pptv 103 70-130 3 25 Toluene 100.0 90.34 pptv 90 70-130 2 25 Dibromochloromethane 100.0 99.56 pptv 100 70-130 3 25 Toluene 100.0 101.1 pptv 101 70-130 3 25 Tetrachloroethane 100.0 101.1 pptv 101 70-130 3 25 Tetrachloroethane 100.0 106.4 pptv 106 70-130 3 25 Tetrachloroethene 100.0 108.8 pptv 106 70-130 3 25 Tetrachloroethene 100.0 103.8 pptv 104 70-130 3 25 Tetrachloroethene 100.0 99.32 pptv 99 70-130 2 25 m,p-Xylenes 200.0 196.6 pptv 99 70-130 2 25 m,p-Xylenes 200.0 196.6 pptv 98 70-130 3 25 Styrene 100.0 116.8 pptv 117 70-130 2 25 o-Xylene 100.0 103.3 pptv 117 70-130 2 25 (2-Chlorotoluene 100.0 101.1 pptv 101 70-130 3 25 1,2,4-Trimethylbenzene 100.0 129.7 pptv 130 70-130 3 25 1,2,4-Trimethylbenzene 100.0 104.3 pptv 95 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2-Dichlorobenzene 100.0 88.47 pptv 88 70-130 4 25 1,2-Dichlorobenzene 100.0 104.1 pptv 104 70-130 3 25 1,2-C-Tetrachloroethane 100.0 104.1 pptv 104 70-130	Trichloroethene	100.0	104.1		104	70-130	3	25
1,1,2-Trichloroethane 100.0 103.3 pptv 103 70-130 3 25 Toluene 100.0 90.34 pptv 90 70-130 2 25 Dibromochloromethane 100.0 99.56 pptv 100 70-130 3 25 1,2-Dibromoethane 100.0 101.1 pptv 101 70-130 3 25 Tetrachloroethene 100.0 106.4 pptv 106 70-130 3 25 Chlorobenzene 100.0 103.8 pptv 104 70-130 3 25 Chlorobenzene 100.0 103.8 pptv 104 70-130 3 25 Chlorobenzene 100.0 193.8 pptv 104 70-130 3 25 Ethylbenzene 100.0 198.6 pptv 99 70-130 2 25 mp-Xylenes 200.0 196.6 pptv 98 70-130 3 25 Styrene 100.0 116.8 pptv 117 70-130 2 25	cis-1,3-Dichloropropene	100.0	103.9	pptv	104	70-130	3	25
Toluene 100.0 90.34 pptv 90 70-130 2 25 Dibromochloromethane 100.0 99.56 pptv 100 70-130 3 25 1,2-Dibromoethane 100.0 101.1 pptv 101 70-130 3 25 Tetrachloroethene 100.0 106.4 pptv 106 70-130 3 25 Chlorobenzene 100.0 103.8 pptv 104 70-130 3 25 Ethylbenzene 100.0 193.8 pptv 104 70-130 3 25 Ethylbenzene 100.0 99.32 pptv 99 70-130 2 25 m,p-Xylenes 200.0 196.6 pptv 98 70-130 2 25 Bromoform 100.0 98.34 pptv 98 70-130 2 25 Styrene 100.0 116.8 pptv 117 70-130 2 25 c-Xylene <td>trans-1,3-Dichloropropene</td> <td>100.0</td> <td>104.4</td> <td></td> <td>104</td> <td>70-130</td> <td>3</td> <td>25</td>	trans-1,3-Dichloropropene	100.0	104.4		104	70-130	3	25
Toluene 100.0 90.34 pptv 90 70-130 2 25 Dibromochloromethane 100.0 99.56 pptv 100 70-130 3 25 1,2-Dibromoethane 100.0 101.1 pptv 101 70-130 3 25 Tetrachloroethene 100.0 106.4 pptv 106 70-130 3 25 Chlorobenzene 100.0 103.8 pptv 104 70-130 3 25 Chlorobenzene 100.0 103.8 pptv 104 70-130 3 25 Chlorobenzene 100.0 99.32 pptv 194 70-130 3 25 Ethylbenzene 100.0 196.6 pptv 98 70-130 2 25 m.p-Xylenes 200.0 196.6 pptv 98 70-130 2 25 Styrene 100.0 116.8 pptv 117 70-130 2 25 O-Xyle	1,1,2-Trichloroethane	100.0	103.3	pptv	103	70-130	3	25
Dibromochloromethane 100.0 99.56 pptv 100 70-130 3 25 1,2-Dibromoethane 100.0 101.1 pptv 101 70-130 3 25 Tetrachloroethene 100.0 106.4 pptv 106 70-130 3 25 Chlorobenzene 100.0 103.8 pptv 104 70-130 3 25 Ethylbenzene 100.0 99.32 pptv 99 70-130 2 25 m,p-Xylenes 200.0 196.6 pptv 98 70-130 3 25 Bromoform 100.0 98.34 pptv 98 70-130 2 25 Styrene 100.0 116.8 pptv 117 70-130 2 25 Styrene 100.0 100.3 pptv 100 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 3 25 1,3,5-Tr	Toluene	100.0	90.34		90	70-130	2	25
1,2-Dibromoethane 100.0 101.1 pptv 101 70-130 3 25 Tetrachloroethene 100.0 106.4 pptv 106 70-130 3 25 Chlorobenzene 100.0 103.8 pptv 104 70-130 3 25 Ethylbenzene 100.0 99.32 pptv 99 70-130 2 25 m,p-Xylenes 200.0 196.6 pptv 98 70-130 3 25 Bromoform 100.0 98.34 pptv 98 70-130 2 25 Styrene 100.0 116.8 pptv 117 70-130 2 25 c-Xylene 100.0 100.3 pptv 100 70-130 2 25 c-Xylene 100.0 100.3 pptv 100 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 3 25 2-Chlorotoluene 100.0 129.7 pptv 130 70-130 3 25	Dibromochloromethane	100.0	99.56		100	70-130	3	25
Chlorobenzene 100.0 103.8 pptv 104 70-130 3 25 Ethylbenzene 100.0 99.32 pptv 99 70-130 2 25 m,p-Xylenes 200.0 196.6 pptv 98 70-130 3 25 Bromoform 100.0 98.34 pptv 98 70-130 2 25 Styrene 100.0 116.8 pptv 117 70-130 2 25 o-Xylene 100.0 100.3 pptv 100 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 3 25 2-Chlorotoluene 100.0 129.7 pptv 101 70-130 3 25 1,3,5-Trimethylbenzene 100.0 113.5 pptv 114 70-130 3 25 Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25	1,2-Dibromoethane	100.0	101.1		101	70-130	3	25
Chlorobenzene 100.0 103.8 pptv 104 70-130 3 25 Ethylbenzene 100.0 99.32 pptv 99 70-130 2 25 m,p-Xylenes 200.0 196.6 pptv 98 70-130 3 25 Bromoform 100.0 98.34 pptv 98 70-130 2 25 Styrene 100.0 116.8 pptv 117 70-130 2 25 o-Xylene 100.0 100.3 pptv 100 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 3 25 2-Chlorotoluene 100.0 129.7 pptv 130 70-130 3 25 1,3,5-Trimethylbenzene 100.0 113.5 pptv 114 70-130 3 25 Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25	Tetrachloroethene	100.0	106.4	pptv	106	70-130	3	25
Ethylbenzene 100.0 99.32 pptv 99 70-130 2 25 m,p-Xylenes 200.0 196.6 pptv 98 70-130 3 25 Bromoform 100.0 98.34 pptv 98 70-130 2 25 Styrene 100.0 116.8 pptv 117 70-130 2 25 o-Xylene 100.0 100.3 pptv 100 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 129.7 pptv 130 70-130 3 25 1,2,4-Trimethylbenzene 100.0 113.5 pptv 114 70-130 3 25 Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4	Chlorobenzene	100.0	103.8		104	70-130	3	25
m,p-Xylenes 200.0 196.6 pptv 98 70-130 3 25 Bromoform 100.0 98.34 pptv 98 70-130 2 25 Styrene 100.0 116.8 pptv 117 70-130 2 25 o-Xylene 100.0 100.3 pptv 100 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 129.7 pptv 130 70-130 3 25 1,2,4-Trimethylbenzene 100.0 113.5 pptv 114 70-130 3 25 Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 </td <td>Ethylbenzene</td> <td>100.0</td> <td>99.32</td> <td></td> <td>99</td> <td>70-130</td> <td>2</td> <td>25</td>	Ethylbenzene	100.0	99.32		99	70-130	2	25
Bromoform 100.0 98.34 pptv 98 70-130 2 25 Styrene 100.0 116.8 pptv 117 70-130 2 25 o-Xylene 100.0 100.0 100.3 pptv 100 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 129.7 pptv 130 70-130 3 25 1,2,4-Trimethylbenzene 100.0 113.5 pptv 114 70-130 3 25 Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2,4-Trichlorobenzene 100.0 88.47 pptv 88	m,p-Xylenes	200.0	196.6		98	70-130	3	25
Styrene 100.0 116.8 pptv 117 70-130 2 25 o-Xylene 100.0 100.3 pptv 100 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 129.7 pptv 130 70-130 3 25 1,2,4-Trimethylbenzene 100.0 113.5 pptv 114 70-130 3 25 Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2,4-Trichlorobenzene 100.0 88.47 pptv 88 70-130 4 25 1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104 <	Bromoform	100.0	98.34		98	70-130	2	25
o-Xylene 100.0 100.3 pptv 100 70-130 3 25 2-Chlorotoluene 100.0 101.1 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 129.7 pptv 130 70-130 3 25 1,2,4-Trimethylbenzene 100.0 113.5 pptv 114 70-130 3 25 Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2,4-Trichlorobenzene 100.0 88.47 pptv 88 70-130 4 25 1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104 70-130 3 25	Styrene	100.0	116.8		117	70-130	2	25
2-Chlorotoluene 100.0 101.1 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 129.7 pptv 130 70-130 3 25 1,2,4-Trimethylbenzene 100.0 113.5 pptv 114 70-130 3 25 Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2,4-Trichlorobenzene 100.0 88.47 pptv 88 70-130 4 25 1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104 70-130 3 25	o-Xylene	100.0	100.3		100	70-130	3	25
1,3,5-Trimethylbenzene 100.0 129.7 pptv 130 70-130 3 25 1,2,4-Trimethylbenzene 100.0 113.5 pptv 114 70-130 3 25 Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2,4-Trichlorobenzene 100.0 88.47 pptv 88 70-130 4 25 1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104 70-130 3 25	2-Chlorotoluene	100.0	101.1		101	70-130	2	25
1,2,4-Trimethylbenzene 100.0 113.5 pptv 114 70-130 3 25 Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2,4-Trichlorobenzene 100.0 88.47 pptv 88 70-130 4 25 1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104 70-130 3 25	1,3,5-Trimethylbenzene	100.0			130	70-130	3	25
Benzyl chloride 100.0 94.91 pptv 95 70-130 4 25 1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2,4-Trichlorobenzene 100.0 88.47 pptv 88 70-130 4 25 1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104 70-130 3 25	1,2,4-Trimethylbenzene				114			25
1,3-Dichlorobenzene 100.0 104.3 pptv 104 70-130 3 25 1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2,4-Trichlorobenzene 100.0 88.47 pptv 88 70-130 4 25 1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104 70-130 3 25	Benzyl chloride	100.0	94.91		95	70-130	4	25
1,4-Dichlorobenzene 100.0 102.0 pptv 102 70-130 4 25 1,2-Dichlorobenzene 100.0 101.1 pptv 101 70-130 4 25 1,2,4-Trichlorobenzene 100.0 88.47 pptv 88 70-130 4 25 1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104 70-130 3 25	1,3-Dichlorobenzene	100.0	104.3		104	70-130	3	25
1,2-Dichlorobenzene 100.0 101.1 pptv 101.70-130 4 25 1,2,4-Trichlorobenzene 100.0 88.47 pptv 88.70-130 4 25 1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104.70-130 3 25	1,4-Dichlorobenzene	100.0	102.0		102	70-130	4	25
1,2,4-Trichlorobenzene 100.0 88.47 pptv 88 70-130 4 25 1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104 70-130 3 25	1,2-Dichlorobenzene							
1,1,2,2-Tetrachloroethane 100.0 104.1 pptv 104 70-130 3 25	1,2,4-Trichlorobenzene							
	1,1,2,2-Tetrachloroethane						3	
ppt.	1,1,1,2-Tetrachloroethane	100.0	101.8	pptv	102	70-130	3	25

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

•						•	
QC1212996 Analyte	Spiked	Result (V)	Units (V)	%REC	Limits	RPD	Lim
Naphthalene	100.0	82.72	pptv	83	70-130	4	25
Hexachlorobutadiene	100.0	93.77	pptv	94	70-130	4	25
QC1212996 Surrogate				%RE	C	Limits	
Bromofluorobenzene				1()3	70-130	

Legend

RPD: Relative Percent Difference

Result (V): Result in volume units

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Type: BLANK Diln Fac: 1.000 Prep: METHOD

Lab ID: QC1212997 **Batch#:** 358120 **Analysis:** EPA TO-15 SIM

Matrix: Air Analyzed: 12/17/24 11:49 Analyst: OHD

QC1212997 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	ND	10	pptv	ND	0.049	ug/m3
Chloromethane	ND	100	pptv	ND	0.21	ug/m3
Freon 114	ND	10	pptv	ND	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
Bromomethane	ND	10	pptv	ND	0.039	ug/m3
Chloroethane	ND	10	pptv	ND	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	ND	10	pptv	ND	0.056	ug/m3
I,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	ND	20	pptv	ND	0.069	ug/m3
Freon 113	ND	10	pptv	ND	0.077	ug/m3
rans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	ND	10	pptv	ND	0.049	ug/m3
,2-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	ND	10	pptv	ND	0.032	ug/m3
Carbon Tetrachloride	ND	10	pptv	ND	0.063	ug/m3
,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Frichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
rans-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Foluene	ND	10	pptv	ND	0.038	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.068	ug/m3
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3
Ethylbenzene	ND	10	pptv	ND	0.043	ug/m3
n,p-Xylenes	ND	10	pptv	ND	0.043	ug/m3
Bromoform	ND	10	pptv	ND	0.10	ug/m3
Styrene	ND	10	pptv	ND	0.043	ug/m3
o-Xylene	ND	10	pptv	ND	0.043	ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
,3,5-Trimethylbenzene	ND	10	pptv	ND	0.049	ug/m3
,3,3-Trimethylbenzene	ND ND	10	pptv	ND ND	0.049	ug/m3
Benzyl chloride	ND ND	10	pptv	ND ND	0.049	ug/m3
l ,3-Dichlorobenzene	ND ND	10	pptv	ND ND	0.060	ug/m3
,4-Dichlorobenzene	ND	10	pptv	ND	0.060	ug/m3
,2-Dichlorobenzene	ND ND	10	pptv	ND ND	0.060	ug/m3
,2,4-Trichlorobenzene	ND ND	10		ND ND	0.000	ug/m3
1,1,2,2-Tetrachloroethane	ND ND	10	pptv	ND ND	0.074	ug/m3
1,1,1,2-Tetrachloroethane			pptv		0.069	
	ND ND	10	pptv	ND ND	0.069	ug/m3
Naphthalene Hoveeblerebutediene	ND ND	10	pptv			ug/m3
Hexachlorobutadiene		10	pptv	ND	0.11	ug/m3
Xylene (total)	ND	10	pptv	ND	0.043	ug/m3

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

 QC1212997 Surrogate
 %REC
 Limits
 Units (M)

 Bromofluorobenzene
 90
 70-130
 ug/m3

Legend

ND: Not Detected
RL (V): Reporting Limit
Result (M): Result in mass units
Result (V): Result in volume units

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Type: BS Diln Fac: 1.000 Prep: METHOD

Lab ID: QC1213576 **Batch#:** 358299 **Analysis:** EPA TO-15 SIM

Matrix: Air Analyzed: 12/18/24 07:32 Analyst: OHD

1141y2ca: 12/10/2+07:02	•	Analyst. O		
Spiked	Result (V)	Units (V)	%REC	Limits
 100.0	100.2	pptv	100	70-130
100.0	101.4	pptv	101	70-130
100.0	100.3	pptv	100	70-130
100.0	101.1	pptv	101	70-130
100.0	98.00	pptv	98	70-130
100.0	98.99	pptv	99	70-130
100.0	103.1	pptv	103	70-130
100.0	100.2	pptv	100	70-130
100.0	104.9	pptv	105	70-130
100.0	98.92	pptv	99	70-130
100.0	101.1	pptv	101	70-130
100.0	101.6	pptv	102	70-130
100.0	100.6	pptv	101	70-130
100.0	101.6	pptv	102	70-130
100.0	100.3	pptv	100	70-130
100.0	99.12	pptv	99	70-130
100.0	99.45	pptv	99	70-130
100.0	97.97	pptv	98	70-130
100.0	97.79	pptv	98	70-130
100.0	100.5	pptv	100	70-130
100.0	96.32	pptv	96	70-130
100.0	100.0	pptv	100	70-130
100.0	101.6	pptv	102	70-130
100.0	100.8	pptv	101	70-130
100.0	98.92	pptv	99	70-130
100.0	88.32	pptv	88	70-130
100.0	95.28	pptv	95	70-130
100.0	96.75	pptv	97	70-130
100.0	102.3	pptv	102	70-130
100.0	100.5	pptv	101	70-130
100.0	97.87	pptv	98	70-130
200.0	194.0	pptv	97	70-130
100.0	94.91	pptv	95	70-130
100.0	115.8	pptv	116	70-130
100.0	99.24	pptv	99	70-130
100.0	99.33	pptv	99	70-130
100.0	127.0	pptv	127	70-130
100.0	110.5	pptv	110	70-130
100.0	90.53	pptv	91	70-130
100.0	99.84	pptv	100	70-130
100.0	96.97	pptv	97	70-130
100.0	96.94	pptv	97	70-130
100.0	83.43	pptv	83	70-130
100.0	98.86	pptv	99	70-130
100.0				70-130
100.0	77.14		77	70-130
			88	70-130
100.0 100.0 100.0 100.0 100.0	96.97 96.94 83.43 98.86 98.31	pptv pptv pptv	97 97 83 99 98 77	

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

QC1213576 Surrogate%RECLimitsBromofluorobenzene10470-130

Type: BSD Diln Fac: 1.000 Prep: METHOD

Lab ID: QC1213577 **Batch#:** 358299 **Analysis:** EPA TO-15 SIM

Matrix: Air Analyzed: 12/18/24 08:15 Analyst: OHD

Chloromethane 100.0 102.8 pptv 103 70-130 1 25 Freon 114 100.0 101.3 pptv 101 70-130 1 25 Vinyl Chloride 100.0 101.8 pptv 102 70-130 1 25 Bromomethane 100.0 98.93 pptv 99 70-130 2 25 Bromomethane 100.0 98.93 pptv 99 70-130 2 25 Vinyl bromide 100.0 104.2 pptv 104 70-130 1 25 Vinyl bromide 100.0 104.2 pptv 104 70-130 1 25 Vinyl bromide 100.0 104.2 pptv 104 70-130 1 25 Tichloroftuoromethane 100.0 105.4 pptv 105 70-130 0 25 Tichloroftuoromethane 100.0 105.4 pptv 107 70-130 2 25 Tichloroftuoromethane 100.0 100.4 pptv 100 70-130 2 25 Tichloroftuoromethane 100.0 100.4 pptv 102 70-130 1 25 Trans-1.2-Dichloroethane 100.0 101.2 pptv 102 70-130 1 25 Trans-1.2-Dichloroethane 100.0 101.2 pptv 102 70-130 1 25 Trans-1.2-Dichloroethane 100.0 101.2 pptv 101 70-130 1 25 Tichloroftorm 100.0 101.3 pptv 107 70-130 1 25 Tichloroftorm 100.0 101.3 pptv 101 70-130 1 25 Tichloroftorm 100.0 100.2 pptv 100 70-130 1 25 Tichloroethane 100.0 100.2 pptv 100 70-130 1 25 Tichloroethane 100.0 98.75 pptv 98 70-130 1 25 Tichloroethane 100.0 101.4 pptv 101 70-130 1 25 Tichloroethane 100.0 98.75 pptv 99 70-130 1 25 Tichloroethane 100.0 98.75 pptv 99 70-130 1 25 Tichloroethane 100.0 98.75 pptv 99 70-130 1 25 Tichloroethane 100.0 99.73 pptv 101 70-130 1 25 Tichloroethane 100.0 98.75 pptv 99 70-130 1 25 Tichloroethane 100.0 98.75	QC1213577 Analyte	Spiked	Result (V)	Units (V)	%REC	Limits	RPD	Lim
Freen 114 100.0 101.3 pptv 101 70-130 1 25 Bromomethane 100.0 101.8 pptv 102 70-130 1 25 Bromomethane 100.0 101.9 pptv 102 70-130 1 25 Bromomethane 100.0 101.9 pptv 102 70-130 1 25 Bromomethane 100.0 101.1 pptv 101 70-130 1 25 Trichlorofluoromethane 100.0 101.1 pptv 101 70-130 1 25 Trichlorofluoromethane 100.0 101.1 pptv 100 70-130 2 25 Trichlorofluoromethane 100.0 100.4 pptv 100 70-130 2 25 Freen 113 100.0 101.7 pptv 102 70-130 1 25 Trichlorofluoromethane 100.0 101.2 pptv 101 70-130 1 25 Trichlorofluoromethane 100.0 100.2 pptv 101 70-130 1 25 Trichlorofluoromethane 100.0 100.2 pptv 101 70-130 1 25 Trichlorofluoromethane 100.0 100.2 pptv 101 70-130 1 25 Benzene 100.0 98.41 pptv 98 70-130 1 25 Benzene 100.0 98.75 pptv 99 70-130 1 25 Bromodichloromethane 100.0 101.4 pptv 101 70-130 1 25 Bromodichloromethane 100.0 101.4 pptv 101 70-130 1 25 Trichlorofluoromethane 100.0 101.4 pptv 101 70-130 1 25 Trichlorofluoromethane 100.0 101.4 pptv 101 70-130 1 25 Trichlorofluoromethane 100.0 98.75 pptv 99 70-130 1 25 Trichloromethane 100.0 99.73 pptv 100 70-130 1 25 Trichloromethane 100.0 99.73 pptv 101	Freon 12			pptv	101		0	
Vinyl Chloride 100.0 101.8 pptv 102 70-130 1 25 Chloroethane 100.0 98.93 pptv 99 70-130 0 25 Chloroethane 100.0 98.93 pptv 99 70-130 1 25 Chloroethane 100.0 104.2 pptv 104 70-130 1 25 Trichlorofluoromethane 100.0 104.2 pptv 104 70-130 1 25 Trichlorofluoromethane 100.0 105.4 pptv 105 70-130 0 25 Trichlorofluoromethane 100.0 105.4 pptv 105 70-130 0 25 Trichlorofluoromethane 100.0 105.4 pptv 105 70-130 0 25 Trichlorofluoromethane 100.0 100.4 pptv 102 70-130 1 25 Trans-1,2-Dichloroethane 100.0 101.7 pptv 102 70-130 1 25 Trans-1,2-Dichloroethane 100.0 102.4 pptv 102 70-130 1 25 Trans-1,2-Dichloroethane 100.0 102.0 pptv 102 70-130 1 25 Chloroform 100.0 102.0 pptv 102 70-130 1 25 Chloroform 100.0 100.2 pptv 100 70-130 1 25 Chloroethane 100.0 100.2 pptv 100 70-130 1 25 Trichloroethane 100.0 100.2 pptv 100 70-130 1 25 Trichloroethane 100.0 98.75 pptv 99 70-130 1 25 Trichloroethane 100.0 98.75 pptv 99 70-130 1 25 Trichloroethane 100.0 101.4 pptv 101 70-130 1 25 Trichloroethane 100.0 99.73 pptv 101 70-130 1 25 Trichloroethane 100.0 99.73 pptv 101 70-130 1 25 Trichloroethane 100.0 99.73 pptv 99 70-130 1 25 Trichloroethane 100.0 99.75 pptv 99 70-130 1 25 Tr	Chloromethane			pptv	103		1	
Bromomethane	Freon 114			pptv	101		1	
Chlorosthane	Vinyl Chloride	100.0	101.8	pptv	102	70-130	1	25
Viryl bromide 100.0 104.2 pptv 104 70-130 1 25 Trichlorofluoromethane 100.0 101.1 pptv 101 70-130 1 25 Methylene Chloride 100.0 105.4 pptv 105 70-130 2 25 Methylene Chloride 100.0 101.7 pptv 102 70-130 2 25 Freen 113 100.0 101.7 pptv 102 70-130 1 25 trans-1,2-Dichloroethene 100.0 101.2 pptv 101 70-130 1 25 ct-1,1-Dichloroethane 100.0 101.2 pptv 101 70-130 1 25 Chloroform 100.0 102.0 pptv 101 70-130 1 25 Chloroform 100.0 101.3 pptv 101 70-130 1 25 Chloroform 100.0 101.3 pptv 101 70-130 1 25 Chloropropene 100.0 100.2 pptv 100 70-130 1 25	Bromomethane	100.0	101.9	pptv	102	70-130	4	25
Trichlorofluoromethane 100.0 101.1 pptv 101 70-130 1 25 1.1-Dichloroethene 100.0 105.4 pptv 105 70-130 0 25 Methylene Chloride 100.0 100.4 pptv 100 70-130 2 25 Freon 113 100.0 101.7 pptv 102 70-130 1 25 1.1-Dichloroethene 100.0 101.2 pptv 102 70-130 1 25 1.1-Dichloroethene 100.0 101.2 pptv 101 70-130 1 25 1.1-Dichloroethene 100.0 101.2 pptv 101 70-130 1 25 1.1-Dichloroethene 100.0 101.3 pptv 101 70-130 1 25 1.1-Dichloroethene 100.0 101.3 pptv 101 70-130 1 25 1.1-Dichloroethene 100.0 100.2 pptv 100 70-130 1 25 1.1-Dichloroethane 100.0 100.2 pptv 100 70-130 1 25 1.2-Dichloroethane 100.0 98.41 pptv 97 70-130 1 25 1.1-Trichloroethane 100.0 98.75 pptv 99 70-130 1 25 1.2-Dichloroethoroethane 100.0 98.75 pptv 99 70-130 1 25 1.2-Dichloroethene 100.0 101.4 pptv 101 70-130 1 25 1.1-Dichloroethene 100.0 101.4 pptv 101 70-130 1 25 1.1-Dichloroethene 100.0 101.1 pptv 101 70-130 1 25 1.1-Dichloroethene 100.0 101.1 pptv 101 70-130 1 25 1.1-Dichloroethene 100.0 101.1 pptv 101 70-130 1 25 1.1-Dichloroethene 100.0 98.79 pptv 100 70-130 1 25 1.1-Dichloroethene 100.0 98.89 pptv 99 70-130 1 25 1.1-Dichloroethene 100.0 98.89 pptv 99 70-130 1 25 1.1-Dichloroethene 100.0 98.85 pptv 99 70-130 1 25 1.1-Dichloroethene 100.0 98	Chloroethane	100.0	98.93	pptv	99	70-130	0	25
1,1-Dichloroethene 100.0 105.4 pptv 105 70-130 0 25 Methylene Chloride 100.0 100.4 pptv 100 70-130 2 25 Freon 113 100.0 101.7 pptv 102 70-130 1 25 Irans-1,2-Dichloroethene 100.0 102.4 pptv 101 70-130 1 25 1,1-Dichloroethane 100.0 101.2 pptv 101 70-130 0 25 Chloroform 100.0 100.2 pptv 100 70-130 0 25 Chloroform 100.0 100.2 pptv 100 70-130 0 25 Chloroform 100.0 100.2 pptv 100 70-130 1 25 Benzene 100.0 100.2 pptv 100 70-130 1 25 Benzene 100.0 98.75 pptv 99 70-130 1 25 Carbon Tetrachloride 100.0 91.4 pptv 97 70-130 1 2	Vinyl bromide		104.2	pptv	104		1	
Methylene Chloride 100.0 100.4 pptv 100 70-130 2 25 Freen I13 100.0 101.7 pptv 102 70-130 1 25 Trans-1,2-Dichloroethene 100.0 102.4 pptv 101 70-130 1 25 1,1-Dichloroethene 100.0 101.2 pptv 101 70-130 1 25 Chloroform 100.0 101.3 pptv 101 70-130 1 25 Chloroform 100.0 100.2 pptv 100 70-130 1 25 Benzene 100.0 98.41 pptv 99 70-130 1 25 Benzene<	Trichlorofluoromethane	100.0	101.1	pptv	101	70-130	1	25
Freon 113 100.0 101.7 pptv 102 70-130 1 25 trans-1,2-Dichloroethene 100.0 102.4 pptv 102 70-130 1 25 trans-1,2-Dichloroethene 100.0 101.2 pptv 101 70-130 1 25 cis-1,2-Dichloroethene 100.0 101.2 pptv 101 70-130 0 25 Chloroform 100.0 101.3 pptv 101 70-130 1 25 Chloroform 100.0 101.3 pptv 101 70-130 1 25 Chloroform 100.0 101.3 pptv 101 70-130 1 25 Chloroform 100.0 100.2 pptv 100 70-130 1 25 Benzene 100.0 100.2 pptv 100 70-130 1 25 Benzene 100.0 98.41 pptv 98 70-130 0 25 Carbon Tetrachloride 100.0 98.45 pptv 99 70-130 1 25 Benzene 100.0 101.4 pptv 101 70-130 1 25 Benzene 100.0 98.75 pptv 99 70-130 1 25 Bromodichloromethane 100.0 97.14 pptv 101 70-130 1 25 Bromodichloropropane 100.0 101.4 pptv 101 70-130 1 25 Carbon Tetrachloride 100.0 97.14 pptv 101 70-130 1 25 Cis-1,3-Dichloropropane 100.0 101.4 pptv 101 70-130 1 25 Cis-1,3-Dichloropropane 100.0 101.4 pptv 101 70-130 1 25 Cis-1,3-Dichloropropane 100.0 101.4 pptv 101 70-130 1 25 Cis-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 1 25 Cis-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 1 25 Toluene 100.0 99.73 pptv 100 70-130 1 25 Toluene 100.0 99.73 pptv 101 70-130 1 25 Toluene 100.0 99.73 pptv 101 70-130 1 25 Toluene 100.0 99.73 pptv 100 70-130 1 25 Tetrachloroethane 100.0 99.73 pptv 100 70-130 1 25 Tetrachloroethane 100.0 98.89 pptv 99 70-130 1 25 Tetrachloroethane 100.0 98.99 pptv 104 70-130 2 25 Tetrachloroethene 100.0 101.4 pptv 101 70-130 1 25 Tetrachloroethane 100.0 101.1	1,1-Dichloroethene	100.0	105.4	pptv	105	70-130	0	25
trans-1,2-Dichloroethene	Methylene Chloride	100.0	100.4	pptv	100	70-130	2	25
1,1-Dichloroethane 100.0 101.2 pptv 101 70-130 1 25 cis-1,2-Dichloroethene 100.0 102.0 pptv 101 70-130 0 25 Chloroform 100.0 100.2 pptv 101 70-130 1 25 1,2-Dichloroethane 100.0 100.2 pptv 100 70-130 1 25 1,1,1-Trichloroethane 100.0 100.2 pptv 100 70-130 1 25 Benzene 100.0 98.41 pptv 98 70-130 1 25 Carbon Tetrachloride 100.0 98.75 pptv 101 70-130 1 25 Bromodichloromethane 100.0 101.4 pptv 101 70-130 1 25 Trichloroethene 100.0 101.4 pptv 101 70-130 1 25 Trichloroethane 100.0 100.8 pptv 101 70-130 1 25 Trichloroethane 100.0 101.1 pptv 101 70-130 </td <td>Freon 113</td> <td>100.0</td> <td>101.7</td> <td>pptv</td> <td>102</td> <td>70-130</td> <td>1</td> <td>25</td>	Freon 113	100.0	101.7	pptv	102	70-130	1	25
cis-1,2-Dichloroethene 100.0 102.0 pptv 102 70-130 0 25 Chloroform 100.0 101.3 pptv 101 70-130 1 25 L,2-Dichloroethane 100.0 100.2 pptv 100 70-130 1 25 1,1,1-Trichloroethane 100.0 100.2 pptv 100 70-130 1 25 Benzene 100.0 98.41 pptv 98 70-130 0 25 Carbon Tetrachloride 100.0 98.75 pptv 99 70-130 1 25 1,2-Dichloropropane 100.0 101.4 pptv 97 70-130 1 25 Bromodichloromethane 100.0 97.14 pptv 97 70-130 1 25 Trichloroethane 100.0 101.4 pptv 97 70-130 1 25 Itans-1,3-Dichloropropene 100.0 197.3 pptv 100 70-130 1	trans-1,2-Dichloroethene	100.0	102.4	pptv	102	70-130	1	25
Chloroform 100.0 101.3 pptv 101 70-130 1 25 1,2-Dichloroethane 100.0 100.2 pptv 100 70-130 1 25 1,2-Dichloroethane 100.0 100.2 pptv 100 70-130 1 25 Benzene 100.0 98.41 pptv 98 70-130 0 25 Carbon Tetrachloride 100.0 98.41 pptv 99 70-130 1 25 Carbon Tetrachloride 100.0 98.41 pptv 99 70-130 1 25 Carbon Tetrachloride 100.0 97.14 pptv 99 70-130 1 25 Total Port 100 70-130 1 2	1,1-Dichloroethane	100.0	101.2	pptv	101	70-130	1	25
1,2-Dichloroethane 100.0 100.2 pptv 100 70-130 1 25 1,1,1-Trichloroethane 100.0 100.2 pptv 100 70-130 1 25 Benzene 100.0 98.41 pptv 98 70-130 0 25 Carbon Tetrachloride 100.0 98.75 pptv 99 70-130 1 25 Dichloropropane 100.0 101.4 pptv 101 70-130 1 25 Bromodichloromethane 100.0 101.4 pptv 101 70-130 1 25 Bromodichloromethane 100.0 101.4 pptv 101 70-130 1 25 Trichloroethane 100.0 101.4 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 1 25 Tetrachloroethane 100.0 99.73 pptv 100 70-130 1 25 Tolluene 100.0 95.56 pptv 96 70-13	cis-1,2-Dichloroethene	100.0	102.0	pptv	102	70-130	0	25
1,1,1-Trichloroethane 100.0 100.2 pptv 100 70-130 1 25 Benzene 100.0 98.41 pptv 98 70-130 0 25 Carbon Tetrachloride 100.0 98.75 pptv 99 70-130 1 25 1,2-Dichloropropane 100.0 101.4 pptv 101 70-130 1 25 Bromodichloromethane 100.0 97.14 pptv 97 70-130 1 25 Trichloroethene 100.0 101.4 pptv 101 70-130 1 25 Trichloroethene 100.0 101.4 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 1 25 trans-1,2-Dichloropropene 100.0 99.73 pptv 101 70-130 1 25 Trichloroethane 100.0 99.73 pptv 100 70-130 1 25 Tollarene 100.0 95.56 pptv 96 7	Chloroform	100.0	101.3	pptv	101	70-130	1	25
Benzene 100.0 98.41 pptv 98 70-130 0 25 Carbon Tetrachloride 100.0 98.75 pptv 98 70-130 1 25 1,2-Dichloropropane 100.0 101.4 pptv 101 70-130 1 25 Bromodichloromethane 100.0 97.14 pptv 97 70-130 1 25 Trichloroptomethane 100.0 101.4 pptv 101 70-130 1 25 Trichloroptopene 100.0 100.8 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 99.73 pptv 100 70-130 1 25 Tolluene 100.0 99.73 pptv 100 70-130 1 25 Tolluene 100.0 95.56 pptv 96 70-130 1 25	1,2-Dichloroethane	100.0	100.2	pptv	100	70-130	1	25
Benzene 100.0 98.41 pptv 98 70-130 0 25 Carbon Tetrachloride 100.0 98.75 pptv 99 70-130 1 25 L2-Dichloropropane 100.0 101.4 pptv 101 70-130 1 25 Bromodichloromethane 100.0 97.14 pptv 97 70-130 1 25 Trichloroethene 100.0 101.4 pptv 101 70-130 1 25 Trichloroethene 100.0 100.8 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 99.73 pptv 100 70-130 1 25 Tolluene 100.0 95.56 pptv 96 70-130 1 25 Tolluene 100.0 95.56 pptv 96 70-130 1 25 <td>1,1,1-Trichloroethane</td> <td>100.0</td> <td>100.2</td> <td>pptv</td> <td>100</td> <td>70-130</td> <td>1</td> <td>25</td>	1,1,1-Trichloroethane	100.0	100.2	pptv	100	70-130	1	25
Carbon Tetrachloride 100.0 98.75 pptv 99 70-130 1 25 1,2-Dichloropropane 100.0 101.4 pptv 97 70-130 1 25 Bromodichloromethane 100.0 97.14 pptv 97 70-130 1 25 Trichloroethene 100.0 101.4 pptv 101 70-130 1 25 cis-1,3-Dichloropropene 100.0 100.8 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 99.73 pptv 100 70-130 1 25 Toluene 100.0 88.98 pptv 89 70-130 1 25 Dibromochloromethane 100.0 95.56 pptv 96 70-130 1 25 Tetrachloroethene 100.0 97.91 pptv 98 70-130 1	Benzene	100.0	98.41		98	70-130	0	25
1,2-Dichloropropane 100.0 101.4 pptv 101 70-130 1 25 Bromodichloromethane 100.0 97.14 pptv 97 70-130 1 25 Trichloroethene 100.0 101.4 pptv 101 70-130 1 25 cis-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 1 25 Toluene 100.0 99.73 pptv 100 70-130 1 25 Toluene 100.0 88.98 pptv 89 70-130 1 25 Toluene 100.0 95.56 pptv 96 70-130 1 25 Toluene 100.0 95.56 pptv 96 70-130 1 25 Tetrachloroethane 100.0 97.91 pptv 96 70-130 1 25 Tetrachloroethane 100.0 101.7 pptv 104 70-130 1	Carbon Tetrachloride	100.0	98.75		99	70-130	1	25
Bromodichloromethane 100.0 97.14 pptv 97 70-130 1 25 Trichloroethene 100.0 101.4 pptv 101 70-130 1 25 cis-1,3-Dichloropropene 100.0 100.8 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 1 25 1,1,2-Trichloroethane 100.0 99.73 pptv 100 70-130 1 25 Toluene 100.0 88.98 pptv 96 70-130 1 25 Toluene 100.0 95.56 pptv 96 70-130 1 25 Dibromochloromethane 100.0 97.91 pptv 98 70-130 1 25 Tetrachloroethane 100.0 97.91 pptv 98 70-130 1 25 Tetrachloroethane 100.0 101.7 pptv 102 70-130 1 25 <td>1,2-Dichloropropane</td> <td>100.0</td> <td>101.4</td> <td></td> <td>101</td> <td>70-130</td> <td>1</td> <td>25</td>	1,2-Dichloropropane	100.0	101.4		101	70-130	1	25
Trichloroethene 100.0 101.4 pptv 101 70-130 1 25 cis-1,3-Dichloropropene 100.0 100.8 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 0 25 Toluene 100.0 99.73 pptv 100 70-130 1 25 Toluene 100.0 95.56 pptv 96 70-130 1 25 Dibromochloromethane 100.0 95.56 pptv 96 70-130 0 25 1,2-Dibromoethane 100.0 97.91 pptv 98 70-130 1 25 Tetrachloroethene 100.0 103.9 pptv 104 70-130 2 25 Chlorobenzene 100.0 101.7 pptv 102 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 99 70-130 1 25	Bromodichloromethane	100.0	97.14		97	70-130	1	25
cis-1,3-Dichloropropene 100.0 100.8 pptv 101 70-130 1 25 trans-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 0 25 1,1,2-Trichloroethane 100.0 99.73 pptv 100 70-130 1 25 Toluene 100.0 88.98 pptv 89 70-130 1 25 Dibromochloromethane 100.0 95.56 pptv 96 70-130 1 25 1,2-Dibromoethane 100.0 97.91 pptv 98 70-130 0 25 1,2-Dibromoethane 100.0 97.91 pptv 98 70-130 0 25 1,2-Dibromoethane 100.0 103.9 pptv 104 70-130 2 25 Chlorobenzene 100.0 101.7 pptv 102 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 97 70-130 1 25 <td>Trichloroethene</td> <td>100.0</td> <td>101.4</td> <td></td> <td>101</td> <td>70-130</td> <td>1</td> <td>25</td>	Trichloroethene	100.0	101.4		101	70-130	1	25
trans-1,3-Dichloropropene 100.0 101.1 pptv 101 70-130 0 25 1,1,2-Trichloroethane 100.0 99.73 pptv 100 70-130 1 25 Toluene 100.0 88.98 pptv 89 70-130 1 25 Dibromochloromethane 100.0 95.56 pptv 96 70-130 0 25 1,2-Dibromoethane 100.0 97.91 pptv 98 70-130 1 25 Tetrachloroethane 100.0 103.9 pptv 104 70-130 1 25 Chlorobenzene 100.0 101.7 pptv 102 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 99 70-130 1 25 Bromoform 100.0 95.85 pptv 97 70-130 1 25 Styrene 100.0 116.8 pptv 117 70-130 1 25	cis-1,3-Dichloropropene	100.0	100.8		101	70-130	1	25
1,1,2-Trichloroethane 100.0 99.73 pptv 100 70-130 1 25 Toluene 100.0 88.98 pptv 89 70-130 1 25 Dibromochloromethane 100.0 95.56 pptv 96 70-130 0 25 1,2-Dibromoethane 100.0 97.91 pptv 98 70-130 1 25 Tetrachloroethene 100.0 103.9 pptv 104 70-130 1 25 Chlorobenzene 100.0 101.7 pptv 102 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 102 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 99 70-130 1 25 Bromoform 100.0 95.85 pptv 96 70-130 1 25 Styrene 100.0 116.8 pptv 117 70-130 1 25 o-Xylene 100.0 98.85 pptv 99 70-130 2 25	trans-1,3-Dichloropropene	100.0	101.1		101	70-130	0	25
Toluene 100.0 88.98 pptv 89 70-130 1 25 Dibromochloromethane 100.0 95.56 pptv 96 70-130 0 25 1,2-Dibromoethane 100.0 97.91 pptv 98 70-130 1 25 Tetrachloroethene 100.0 103.9 pptv 104 70-130 2 25 Chlorobenzene 100.0 101.7 pptv 102 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 99 70-130 1 25 m,p-Xylenes 200.0 194.6 pptv 97 70-130 1 25 Bromoform 100.0 95.85 pptv 96 70-130 1 25 Styrene 100.0 116.8 pptv 117 70-130 1 25 c-Xylene 100.0 98.85 pptv 99 70-130 1 25 2-Chlorotoluene <td>1,1,2-Trichloroethane</td> <td>100.0</td> <td>99.73</td> <td></td> <td>100</td> <td>70-130</td> <td>1</td> <td>25</td>	1,1,2-Trichloroethane	100.0	99.73		100	70-130	1	25
Dibromochloromethane 100.0 95.56 pptv 96 70-130 0 25 1,2-Dibromoethane 100.0 97.91 pptv 98 70-130 1 25 Tetrachloroethene 100.0 103.9 pptv 104 70-130 2 25 Chlorobenzene 100.0 101.7 pptv 102 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 99 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 99 70-130 1 25 Bromoform 100.0 95.85 pptv 97 70-130 0 25 Styrene 100.0 116.8 pptv 117 70-130 1 25 Styrene 100.0 98.85 pptv 99 70-130 0 25 2-Chlorotoluene 100.0 101.0 pptv 101 70-130 2 25 1,3,5-Trim	Toluene	100.0	88.98		89	70-130	1	25
1,2-Dibromoethane 100.0 97.91 pptv 98 70-130 1 25 Tetrachloroethene 100.0 103.9 pptv 104 70-130 2 25 Chlorobenzene 100.0 101.7 pptv 102 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 99 70-130 1 25 m,p-Xylenes 200.0 194.6 pptv 97 70-130 0 25 Bromoform 100.0 95.85 pptv 96 70-130 1 25 Styrene 100.0 116.8 pptv 117 70-130 1 25 e-Xylene 100.0 98.85 pptv 99 70-130 1 25 2-Chlorotoluene 100.0 101.0 pptv 101 70-130 2 25 2-Chlorotoluene 100.0 128.5 pptv 101 70-130 2 25 1,2,4-Trimethylbenzene 100.0 113.2 pptv 13 70-130 2 25	Dibromochloromethane	100.0	95.56		96	70-130	0	25
Tetrachloroethene 100.0 103.9 pptv 104 70-130 2 25 Chlorobenzene 100.0 101.7 pptv 102 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 99 70-130 1 25 m,p-Xylenes 200.0 194.6 pptv 97 70-130 0 25 Bromoform 100.0 95.85 pptv 96 70-130 1 25 Styrene 100.0 116.8 pptv 117 70-130 1 25 c-Xylene 100.0 98.85 pptv 99 70-130 1 25 c-Xylene 100.0 98.85 pptv 99 70-130 0 25 2-Chlorotoluene 100.0 101.0 pptv 101 70-130 0 25 2-Chlorotoluene 100.0 128.5 pptv 129 70-130 1 25 1,2,4-Trimethylbenzene 100.0 113.2 pptv 113 70-130 2 25	1,2-Dibromoethane	100.0	97.91		98	70-130	1	25
Chlorobenzene 100.0 101.7 pptv 102 70-130 1 25 Ethylbenzene 100.0 98.57 pptv 99 70-130 1 25 m,p-Xylenes 200.0 194.6 pptv 97 70-130 0 25 Bromoform 100.0 95.85 pptv 96 70-130 1 25 Styrene 100.0 116.8 pptv 117 70-130 1 25 o-Xylene 100.0 98.85 pptv 99 70-130 1 25 2-Chlorotoluene 100.0 101.0 pptv 101 70-130 0 25 2-Chlorotoluene 100.0 101.0 pptv 101 70-130 0 25 2-Chlorotoluene 100.0 128.5 pptv 101 70-130 2 25 1,2,4-Trimethylbenzene 100.0 113.2 pptv 113 70-130 2 25 Benzyl chloride 100.0 92.68 pptv 93 70-130 2 25	Tetrachloroethene	100.0	103.9		104	70-130	2	25
Ethylbenzene 100.0 98.57 pptv 99 70-130 1 25 m,p-Xylenes 200.0 194.6 pptv 97 70-130 0 25 Bromoform 100.0 95.85 pptv 96 70-130 1 25 Styrene 100.0 116.8 pptv 117 70-130 1 25 o-Xylene 100.0 98.85 pptv 99 70-130 0 25 2-Chlorotoluene 100.0 101.0 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 128.5 pptv 129 70-130 1 25 1,2,4-Trimethylbenzene 100.0 113.2 pptv 113 70-130 2 25 Benzyl chloride 100.0 92.68 pptv 93 70-130 2 25 1,3-Dichlorobenzene 100.0 101.8 pptv 102 70-130 2 25 1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2	Chlorobenzene	100.0	101.7		102	70-130	1	25
m,p-Xylenes 200.0 194.6 pptv 97 70-130 0 25 Bromoform 100.0 95.85 pptv 96 70-130 1 25 Styrene 100.0 116.8 pptv 117 70-130 1 25 o-Xylene 100.0 98.85 pptv 99 70-130 0 25 2-Chlorotoluene 100.0 101.0 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 128.5 pptv 129 70-130 1 25 1,2,4-Trimethylbenzene 100.0 113.2 pptv 113 70-130 2 25 Benzyl chloride 100.0 92.68 pptv 93 70-130 2 25 1,3-Dichlorobenzene 100.0 101.8 pptv 99 70-130 2 25 1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2 25 1,2-Dichlorobenzene 100.0 98.17 pptv 98 70-130 1	Ethylbenzene	100.0	98.57		99	70-130	1	25
Bromoform 100.0 95.85 pptv 96 70-130 1 25 Styrene 100.0 116.8 pptv 117 70-130 1 25 o-Xylene 100.0 98.85 pptv 99 70-130 0 25 2-Chlorotoluene 100.0 101.0 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 128.5 pptv 129 70-130 1 25 1,2,4-Trimethylbenzene 100.0 113.2 pptv 113 70-130 2 25 Benzyl chloride 100.0 92.68 pptv 93 70-130 2 25 1,3-Dichlorobenzene 100.0 101.8 pptv 102 70-130 2 25 1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2 25 1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 1 25	m,p-Xylenes	200.0	194.6		97	70-130	0	25
Styrene 100.0 116.8 pptv 117 70-130 1 25 o-Xylene 100.0 98.85 pptv 99 70-130 0 25 2-Chlorotoluene 100.0 101.0 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 128.5 pptv 129 70-130 1 25 1,2,4-Trimethylbenzene 100.0 113.2 pptv 113 70-130 2 25 Benzyl chloride 100.0 92.68 pptv 93 70-130 2 25 1,3-Dichlorobenzene 100.0 101.8 pptv 102 70-130 2 25 1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2 25 1,2-Dichlorobenzene 100.0 98.17 pptv 98 70-130 1 25 1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 3 25 1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100	Bromoform	100.0	95.85		96	70-130	1	25
o-Xylene 100.0 98.85 pptv 99 70-130 0 25 2-Chlorotoluene 100.0 101.0 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 128.5 pptv 129 70-130 1 25 1,2,4-Trimethylbenzene 100.0 113.2 pptv 113 70-130 2 25 Benzyl chloride 100.0 92.68 pptv 93 70-130 2 25 1,3-Dichlorobenzene 100.0 101.8 pptv 102 70-130 2 25 1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2 25 1,2-Dichlorobenzene 100.0 98.17 pptv 98 70-130 1 25 1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 3 25 1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100 70-130 1 25	Styrene				117	70-130	1	
2-Chlorotoluene 100.0 101.0 pptv 101 70-130 2 25 1,3,5-Trimethylbenzene 100.0 128.5 pptv 129 70-130 1 25 1,2,4-Trimethylbenzene 100.0 113.2 pptv 113 70-130 2 25 Benzyl chloride 100.0 92.68 pptv 93 70-130 2 25 1,3-Dichlorobenzene 100.0 101.8 pptv 102 70-130 2 25 1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2 25 1,2-Dichlorobenzene 100.0 98.17 pptv 98 70-130 1 25 1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 3 25 1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100 70-130 1 25	•				99		0	
1,3,5-Trimethylbenzene 100.0 128.5 pptv 129 70-130 1 25 1,2,4-Trimethylbenzene 100.0 113.2 pptv 113 70-130 2 25 Benzyl chloride 100.0 92.68 pptv 93 70-130 2 25 1,3-Dichlorobenzene 100.0 101.8 pptv 102 70-130 2 25 1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2 25 1,2-Dichlorobenzene 100.0 98.17 pptv 98 70-130 1 25 1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 3 25 1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100 70-130 1 25	2-Chlorotoluene				101	70-130	2	
1,2,4-Trimethylbenzene 100.0 113.2 pptv 113 70-130 2 25 Benzyl chloride 100.0 92.68 pptv 93 70-130 2 25 1,3-Dichlorobenzene 100.0 101.8 pptv 102 70-130 2 25 1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2 25 1,2-Dichlorobenzene 100.0 98.17 pptv 98 70-130 1 25 1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 3 25 1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100 70-130 1 25								
Benzyl chloride 100.0 92.68 pptv 93 70-130 2 25 1,3-Dichlorobenzene 100.0 101.8 pptv 102 70-130 2 25 1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2 25 1,2-Dichlorobenzene 100.0 98.17 pptv 98 70-130 1 25 1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 3 25 1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100 70-130 1 25	-							
1,3-Dichlorobenzene 100.0 101.8 pptv 102 70-130 2 25 1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2 25 1,2-Dichlorobenzene 100.0 98.17 pptv 98 70-130 1 25 1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 3 25 1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100 70-130 1 25	•							
1,4-Dichlorobenzene 100.0 98.99 pptv 99 70-130 2 25 1,2-Dichlorobenzene 100.0 98.17 pptv 98 70-130 1 25 1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 3 25 1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100 70-130 1 25			101.8			70-130		
1,2-Dichlorobenzene 100.0 98.17 pptv 98 70-130 1 25 1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 3 25 1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100 70-130 1 25						70-130		
1,2,4-Trichlorobenzene 100.0 86.20 pptv 86 70-130 3 25 1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100 70-130 1 25								
1,1,2,2-Tetrachloroethane 100.0 100.2 pptv 100 70-130 1 25								
1.1.1.E 1.00.000.000.0000 1.00.0 1.00.0 00.01 1.00 0.0 1.01 1.00 1	1,1,1,2-Tetrachloroethane	100.0	98.81	pptv	99	70-130	1	25

Project#: STANDARD Lab #: 522442

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

_						•	
QC1213577 Analyte	Spiked	Result (V)	Units (V)	%REC	Limits	RPD	Lim
Naphthalene	100.0	80.37	pptv	80	70-130	4	25
Hexachlorobutadiene	100.0	90.16	pptv	90	70-130	2	25
QC1213577 Surrogate				%RE	C	Limits	

104

70-130

Bromofluorobenzene Legend

RPD: Relative Percent Difference

Result (V): Result in volume units

Lab #: 522442 Project#: STANDARD

Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

Type: BLANK Diln Fac: 1.000 Prep: METHOD

Lab ID: QC1213578 **Batch#:** 358299 **Analysis:** EPA TO-15 SIM

Matrix: Air Analyzed: 12/18/24 09:45 Analyst: OHD

QC1213578 Analyte	Result (V)	RL (V)	Units (V)	Result (M)	RL (M)	Units (M)
Freon 12	ND	10	pptv	ND	0.049	ug/m3
Chloromethane	ND	100	pptv	ND	0.21	ug/m3
Freon 114	ND	10	pptv	ND	0.070	ug/m3
Vinyl Chloride	ND	10	pptv	ND	0.026	ug/m3
3romomethane	ND	10	pptv	ND	0.039	ug/m3
Chloroethane	ND	10	pptv	ND	0.026	ug/m3
Vinyl bromide	ND	10	pptv	ND	0.044	ug/m3
Trichlorofluoromethane	ND	10	pptv	ND	0.056	ug/m3
1,1-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Methylene Chloride	ND	20	pptv	ND	0.069	ug/m3
Freon 113	ND	10	pptv	ND	0.077	ug/m3
trans-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
1,1-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
cis-1,2-Dichloroethene	ND	10	pptv	ND	0.040	ug/m3
Chloroform	ND	10	pptv	ND	0.049	ug/m3
1,2-Dichloroethane	ND	10	pptv	ND	0.040	ug/m3
1,1,1-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Benzene	ND	10	pptv	ND	0.032	ug/m3
Carbon Tetrachloride	ND	10	pptv	ND	0.063	ug/m3
1,2-Dichloropropane	ND	10	pptv	ND	0.046	ug/m3
Bromodichloromethane	ND	10	pptv	ND	0.067	ug/m3
Trichloroethene	ND	10	pptv	ND	0.054	ug/m3
cis-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
rans-1,3-Dichloropropene	ND	10	pptv	ND	0.045	ug/m3
1,1,2-Trichloroethane	ND	10	pptv	ND	0.055	ug/m3
Γoluene	ND	10	pptv	ND	0.038	ug/m3
Dibromochloromethane	ND	10	pptv	ND	0.085	ug/m3
1,2-Dibromoethane	ND	10	pptv	ND	0.077	ug/m3
Tetrachloroethene	ND	10	pptv	ND	0.068	ug/m3
Chlorobenzene	ND	10	pptv	ND	0.046	ug/m3
Ethylbenzene	ND	10	pptv	ND	0.043	ug/m3
n,p-Xylenes	ND	10	pptv	ND	0.043	ug/m3
3romoform	ND	10	pptv	ND	0.10	ug/m3
Styrene	ND ND	10	pptv	ND ND	0.043	ug/m3
o-Xylene	ND ND	10	pptv	ND	0.043	ug/m3
2-Chlorotoluene	ND	10	pptv	ND	0.052	ug/m3
1,3,5-Trimethylbenzene	ND	10		ND	0.049	ug/m3
1,2,4-Trimethylbenzene	ND ND	10	pptv pptv	ND ND	0.049	ug/m3
Benzyl chloride	ND ND	10	pptv	ND ND	0.049	ug/m3
1,3-Dichlorobenzene	ND ND	10	pptv	ND ND	0.052	ug/m3
I,4-Dichlorobenzene	ND	10		ND	0.060	ug/m3
,2-Dichlorobenzene	ND ND	10	pptv	ND ND	0.060	ug/m3
1,2,4-Trichlorobenzene	ND ND	10	pptv	ND ND	0.060	ug/m3 ug/m3
	ND ND		pptv	ND ND	0.074	
1,1,2,2-Tetrachloroethane		10	pptv			ug/m3
1,1,1,2-Tetrachloroethane	ND	10	pptv	ND ND	0.069	ug/m3
Naphthalene	ND	10	pptv	ND	0.052	ug/m3
Hexachlorobutadiene	ND	10	pptv	ND	0.11	ug/m3
Xylene (total)	ND	10	pptv	ND	0.043	ug/m3

Lab #: 522442 Project#: STANDARD
Client: Catalyst Environmental Solutions Location: Walnut Bluff Workplan

QC1213578 Surrogate%RECLimitsUnits (M)Bromofluorobenzene9070-130ug/m3

Legend

ND: Not Detected
RL (V): Reporting Limit
Result (M): Result in mass units
Result (V): Result in volume units

Yola Bayram Catalyst Environmental Solutions 315 Montana Avenue Suite 311 Santa Monica, CA 90403

Lab Job #: 518235 Location: Walnut Bluff Workplan Date Received: 10/15/24

Client Sample ID	Lab Sample ID	Equipment Cert	Equipment ID	Туре	Cleaning Batch
WB01-14D	518235-001	TO15 SIM Indv.	C70196	6L Canister	5884
WB02-14D	518235-002	TO15 SIM Indv.	C70903	6L Canister	5908
WB03-14D	518235-003	TO15 SIM Indv.	C70059	6L Canister	5854
WB04-14D	518235-004	TO15 SIM Indv.	C70932	6L Canister	5914
WB05-14D	518235-005	TO15 SIM Indv.	C70800	6L Canister	5890
WB06-14D	518235-006	TO15 SIM Indv.	C70916	6L Canister	5908
WB07-14D	518235-007	TO15 SIM Indv.	C70901	6L Canister	5908
WB08-14D	518235-008	TO15 SIM Indv.	C70914	6L Canister	5908
WB09-14D	518235-009	TO15 SIM Indv.	C70012	6L Canister	5890
WB10-14D	518235-010	TO15 SIM Indv.	C70331	6L Canister	5890
WB11-14D	518235-011	TO15 SIM Indv.	C70352	6L Canister	5883
WB12-14D	518235-012	TO15 SIM Indv.	C70908	6L Canister	5908
WB13-14D	518235-013	TO15 SIM Indv.	C70249	6L Canister	5890
WB14-14D	518235-014	TO15 SIM Indv.	C70309	6L Canister	5890
WB17-14D	518235-015	TO15 SIM Indv.	C70812	6L Canister	5883
WB18-14D	518235-016	TO15 SIM Indv.	C70938	6L Canister	5914
WB19-14D	518235-017	TO15 SIM Indv.	C70081	6L Canister	5890

Cleaning Batch	Check Run	Equipment ID	Туре
5854	374364761015	C70059	6L Canister
5883	504376376016	C70812	6L Canister
5883	504376376021	C70352	6L Canister
5884	504376376019	C70196	6L Canister
5890	504377891012	C70249	6L Canister
5890	504377891019	C70331	6L Canister
5890	504377891020	C70012	6L Canister
5890	504377891023	C70800	6L Canister
5890	504377891024	C70081	6L Canister
5890	504377891028	C70309	6L Canister
5908	504384909010	C70901	6L Canister
5908	504384909016	C70903	6L Canister
5908	504384909017	C70914	6L Canister
5908	504384909019	C70916	6L Canister
5908	504386383008	C70908	6L Canister
5914	504384909015	C70932	6L Canister
5914	504384909018	C70938	6L Canister

Cleaning Batch	Started	Completed	Pressure	Status
5854	09/06/24 12:41	09/09/24 06:27	<0.05 mmHg	Successful
5883	09/13/24 14:35	09/14/24 08:29	<0.05 mmHg	Successful
5884	09/14/24 09:14	09/16/24 06:17	<0.05 mmHg	Successful
5890	09/16/24 14:14	09/17/24 05:07	<0.05 mmHg	Successful
5908	09/19/24 16:35	09/20/24 05:02	<0.05 mmHg	Successful

10f19

Cleaning Batch	Started	Completed	Pressure	Status	
5914	09/21/24 12:43	09/22/24 09:04	<0.05 mmHg	Successful	

Check Run: 504377891024 Analysis Date/Time: 19-SEP-2024 04:05:00 Equipment ID: C70081

Result	Result	Method	C70081 Analyte
<0.06865 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,1,2-Tetrachloroethane
<0.05456 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,1-Trichloroethane
<0.06865 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,2,2-Tetrachloroethane
<0.05456 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,2-Trichloroethane
<0.04047 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1-Dichloroethane
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1-Dichloroethene
<0.07421 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2,4-Trichlorobenzene
<0.04916 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2,4-Trimethylbenzene
<0.07684 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dibromoethane
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichlorobenzene
<0.04047 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichloroethane
<0.04621 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichloropropane
<0.04916 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,3,5-Trimethylbenzene
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,3-Dichlorobenzene
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,4-Dichlorobenzene
<0.05177 ug/m3	<10.00 pptv	EPA TO-15 SIM	2-Chlorotoluene
<0.03195 ug/m3	<10.00 pptv	EPA TO-15 SIM	Benzene
<0.05177 ug/m3	<10.00 pptv	EPA TO-15 SIM	Benzyl chloride
<0.06701 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromodichloromethane
<0.1034 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromoform
<0.03883 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromomethane
<0.06291 ug/m3	<10.00 pptv	EPA TO-15 SIM	Carbon Tetrachloride
<0.04604 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chlorobenzene
<0.02639 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chloroethane
<0.04883 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chloroform
<0.2065 ug/m3	<100.0 pptv	EPA TO-15 SIM	Chloromethane
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	cis-1,2-Dichloroethene
<0.04539 ug/m3	<10.00 pptv	EPA TO-15 SIM	cis-1,3-Dichloropropene
<0.08519 ug/m3	<10.00 pptv	EPA TO-15 SIM	Dibromochloromethane
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	Ethylbenzene
<0.07664 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 113
<0.06991 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 114
<0.04945 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 12
<0.1067 ug/m3	<10.00 pptv	EPA TO-15 SIM	Hexachlorobutadiene
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	m,p-Xylenes
<0.06947 ug/m3	<20.00 pptv	EPA TO-15 SIM	Methylene Chloride
<0.05242 ug/m3	<10.00 pptv	EPA TO-15 SIM	Naphthalene
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	o-Xylene
<0.04260 ug/m3	<10.00 pptv	EPA TO-15 SIM	Styrene
<0.06783 ug/m3	<10.00 pptv	EPA TO-15 SIM	Tetrachloroethene
<0.03769 ug/m3	<10.00 pptv	EPA TO-15 SIM	Toluene
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	trans-1,2-Dichloroethene
<0.04539 ug/m3	<10.00 pptv	EPA TO-15 SIM	trans-1,3-Dichloropropene
<0.05374 ug/m3	<10.00 pptv	EPA TO-15 SIM	Trichloroethene
<0.05618 ug/m3	<10.00 pptv	EPA TO-15 SIM	Trichlorofluoromethane
<0.04374 ug/m3	<10.00 pptv	EPA TO-15 SIM	Vinyl bromide
<0.02556 ug/m3	<10.00 pptv	EPA TO-15 SIM	Vinyl Chloride

Check Run: 504384909017 Analysis Date/Time: 23-SEP-2024 19:31:00 Equipment ID: C70914

C70914 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.06783 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
trans-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.04374 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3
,			1112200 09/1110

Check Run: 504377891012 Analysis Date/Time: 18-SEP-2024 18:35:00 Equipment ID: C70249

C70249 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.06783 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
trans-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.04374 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3

Check Run: 504384909010 Analysis Date/Time: 23-SEP-2024 13:58:00 Equipment ID: C70901

C70901 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.06783 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
trans-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.04374 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3
,			1515=555 ag/1116

6 of 19 309

Check Run: 504377891020 Analysis Date/Time: 19-SEP-2024 00:55:00 Equipment ID: C70012

C70012 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.04200 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.00769 ug/m3
trans-1,2-Dichloroethene	EPA TO-13 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,3-Dichloropropene	EPA TO-13 SIM	<10.00 pptv	<0.03903 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.03616 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3
viriyi Criiofide	EFA 10-13 SIIVI	<10.00 pptv	<0.02556 ug/ff13

Check Run: 504384909019 Analysis Date/Time: 23-SEP-2024 21:06:00 Equipment ID: C70916

C70916 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.06783 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
trans-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.04374 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3
,			1112200 09/1110

Check Run: 504386383008 Analysis Date/Time: 24-SEP-2024 12:53:00 Equipment ID: C70908

C70908 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.06783 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
trans-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.03503 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.04333 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-13 SIM	<10.00 pptv	<0.03018 ug/m3
Vinyl Chloride	EPA TO-13 SIM	<10.00 pptv	<0.04374 ug/m3
viriyi Oriionae	LI A IO-13 SIIVI	< το.σο μριν	<0.02556 ug/1115

Check Run: 504376376021 Analysis Date/Time: 18-SEP-2024 02:07:00 Equipment ID: C70352

C70352 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.06783 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
trans-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.04374 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3
vinyi Onionae	LI A TO-13 SIIVI	ζτο.σο μριν	<0.02000 ug/1110

Check Run: 504384909018 Analysis Date/Time: 23-SEP-2024 20:18:00 Equipment ID: C70938

C70938 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.06783 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
trans-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.04374 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3

Check Run: 504384909016 Analysis Date/Time: 23-SEP-2024 18:43:00 Equipment ID: C70903

Result	Result	Method	C70903 Analyte
<0.06865 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,1,2-Tetrachloroethane
<0.05456 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,1-Trichloroethane
<0.06865 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,2,2-Tetrachloroethane
<0.05456 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,2-Trichloroethane
<0.04047 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1-Dichloroethane
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1-Dichloroethene
<0.07421 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2,4-Trichlorobenzene
<0.04916 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2,4-Trimethylbenzene
<0.07684 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dibromoethane
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichlorobenzene
<0.04047 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichloroethane
<0.04621 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichloropropane
<0.04916 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,3,5-Trimethylbenzene
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,3-Dichlorobenzene
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,4-Dichlorobenzene
<0.05177 ug/m3	<10.00 pptv	EPA TO-15 SIM	2-Chlorotoluene
<0.03195 ug/m3	<10.00 pptv	EPA TO-15 SIM	Benzene
<0.05177 ug/m3	<10.00 pptv	EPA TO-15 SIM	Benzyl chloride
<0.06701 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromodichloromethane
<0.1034 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromoform
<0.03883 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromomethane
<0.06291 ug/m3	<10.00 pptv	EPA TO-15 SIM	Carbon Tetrachloride
<0.04604 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chlorobenzene
<0.02639 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chloroethane
<0.04883 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chloroform
<0.2065 ug/m3	<100.0 pptv	EPA TO-15 SIM	Chloromethane
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	cis-1,2-Dichloroethene
<0.04539 ug/m3	<10.00 pptv	EPA TO-15 SIM	cis-1,3-Dichloropropene
<0.08519 ug/m3	<10.00 pptv	EPA TO-15 SIM	Dibromochloromethane
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	Ethylbenzene
<0.07664 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 113
<0.06991 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 114
<0.04945 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 12
<0.1067 ug/m3	<10.00 pptv	EPA TO-15 SIM	Hexachlorobutadiene
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	m,p-Xylenes
<0.06947 ug/m3	<20.00 pptv	EPA TO-15 SIM	Methylene Chloride
<0.05242 ug/m3	<10.00 pptv	EPA TO-15 SIM	Naphthalene
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	o-Xylene
<0.04260 ug/m3	<10.00 pptv	EPA TO-15 SIM	Styrene
<0.06783 ug/m3	<10.00 pptv	EPA TO-15 SIM	Tetrachloroethene
<0.03769 ug/m3	<10.00 pptv	EPA TO-15 SIM	Toluene
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	trans-1,2-Dichloroethene
<0.04539 ug/m3	<10.00 pptv	EPA TO-15 SIM	trans-1,3-Dichloropropene
<0.05374 ug/m3	<10.00 pptv	EPA TO-15 SIM	Trichloroethene
<0.05618 ug/m3	<10.00 pptv	EPA TO-15 SIM	Trichlorofluoromethane
<0.04374 ug/m3	<10.00 pptv	EPA TO-15 SIM	Vinyl bromide
<0.02556 ug/m3	<10.00 pptv	EPA TO-15 SIM	Vinyl Chloride

12 of 19 **315**

Check Run: 504376376016 Analysis Date/Time: 17-SEP-2024 22:10:00 Equipment ID: C70812

Resul	Result	Method	C70812 Analyte
<0.06865 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,1,2-Tetrachloroethane
<0.05456 ug/m	<10.00 pptv	EPA TO-15 SIM	1,1,1-Trichloroethane
<0.06865 ug/m	<10.00 pptv	EPA TO-15 SIM	1,1,2,2-Tetrachloroethane
<0.05456 ug/m	<10.00 pptv	EPA TO-15 SIM	1,1,2-Trichloroethane
<0.04047 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1-Dichloroethane
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1-Dichloroethene
<0.07421 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2,4-Trichlorobenzene
<0.04916 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2,4-Trimethylbenzene
<0.07684 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dibromoethane
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichlorobenzene
<0.04047 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichloroethane
<0.04621 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichloropropane
<0.04916 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,3,5-Trimethylbenzene
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,3-Dichlorobenzene
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,4-Dichlorobenzene
<0.05177 ug/m3	<10.00 pptv	EPA TO-15 SIM	2-Chlorotoluene
<0.03195 ug/m3	<10.00 pptv	EPA TO-15 SIM	Benzene
<0.05177 ug/m3	<10.00 pptv	EPA TO-15 SIM	Benzyl chloride
<0.06701 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromodichloromethane
<0.1034 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromoform
<0.03883 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromomethane
<0.06291 ug/m3	<10.00 pptv	EPA TO-15 SIM	Carbon Tetrachloride
<0.04604 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chlorobenzene
<0.02639 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chloroethane
<0.04883 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chloroform
<0.2065 ug/m3	<100.0 pptv	EPA TO-15 SIM	Chloromethane
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	cis-1,2-Dichloroethene
<0.04539 ug/m3	<10.00 pptv	EPA TO-15 SIM	cis-1,3-Dichloropropene
<0.08519 ug/m3	<10.00 pptv	EPA TO-15 SIM	Dibromochloromethane
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	Ethylbenzene
<0.07664 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 113
<0.06991 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 114
<0.04945 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 12
<0.1067 ug/m3	<10.00 pptv	EPA TO-15 SIM	Hexachlorobutadiene
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	m,p-Xylenes
<0.06947 ug/m3	<20.00 pptv	EPA TO-15 SIM	Methylene Chloride
<0.05242 ug/m3	<10.00 pptv	EPA TO-15 SIM	Naphthalene
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	o-Xylene
<0.04260 ug/m3	<10.00 pptv	EPA TO-15 SIM	Styrene
<0.06783 ug/m3	<10.00 pptv	EPA TO-15 SIM	Tetrachloroethene
<0.03769 ug/m	<10.00 pptv	EPA TO-15 SIM	Toluene
<0.03965 ug/m	<10.00 pptv	EPA TO-15 SIM	trans-1,2-Dichloroethene
<0.04539 ug/m	<10.00 pptv	EPA TO-15 SIM	trans-1,3-Dichloropropene
<0.05374 ug/m	<10.00 pptv	EPA TO-15 SIM	Trichloroethene
<0.05618 ug/m	<10.00 pptv	EPA TO-15 SIM	Trichlorofluoromethane
<0.04374 ug/m	<10.00 pptv	EPA TO-15 SIM	Vinyl bromide
<0.02556 ug/m	<10.00 pptv	EPA TO-15 SIM	Vinyl Chloride

Check Run: 504377891023 Analysis Date/Time: 19-SEP-2024 03:17:00 Equipment ID: C70800

C70800 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.06783 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
trans-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.04374 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3
	/\ 10 10 0llvi	1.0.00 pptv	10.02000 ag/1110

Check Run: 504377891019 Analysis Date/Time: 19-SEP-2024 00:07:00 Equipment ID: C70331

C70331 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.06783 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
trans-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.04374 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3
		• • • • • • • • • • • • • • • • • • • •	

Check Run: 504376376019 Analysis Date/Time: 18-SEP-2024 00:32:00 Equipment ID: C70196

1,1,1-Trichloroethane EPA 1,1,2,2-Tetrachloroethane EPA 1,1,2-Trichloroethane EPA 1,1-Dichloroethane EPA 1,1-Dichloroethene EPA 1,1-Dichloroethene EPA 1,2,4-Trichlorobenzene EPA 1,2-Dibromoethane EPA 1,2-Dichlorobenzene EPA 1,2-Dichloroethane EPA 1,2-Dichloropropane EPA 1,3-Dichlorobenzene EPA 1,4-Dichlorobenzene EPA 2-Chlorotoluene EPA Benzene EPA Benzene EPA Bromodichloromethane EPA Bromodichloromethane EPA Chlorobenzene EPA Chloroethane EPA Chloroethane EPA Chloromethane EPA Chloromethane EPA Chloromethane EPA Chloromethane EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv TO-15 SIM <10.00 pptv	<0.05456 ug/m3 <0.06865 ug/m3 <0.05456 ug/m3 <0.05456 ug/m3 <0.04047 ug/m3 <0.03965 ug/m3 <0.07421 ug/m3 <0.04916 ug/m3 <0.07684 ug/m3 <0.06012 ug/m3 <0.04047 ug/m3 <0.04047 ug/m3 <0.04041 ug/m3 <0.04041 ug/m3 <0.04916 ug/m3
1,1,2,2-TetrachloroethaneEPA1,1,2-TrichloroethaneEPA1,1-DichloroethaneEPA1,1-DichloroetheneEPA1,2,4-TrichlorobenzeneEPA1,2,4-TrimethylbenzeneEPA1,2-DibromoethaneEPA1,2-DichlorobenzeneEPA1,2-DichloroethaneEPA1,3-DichloropropaneEPA1,3-DichlorobenzeneEPA1,4-DichlorobenzeneEPA2-ChlorotolueneEPABenzeneEPABenzyl chlorideEPABromodichloromethaneEPABromomethaneEPACarbon TetrachlorideEPAChlorobenzeneEPAChloroethaneEPAChloromethaneEPAChloromethaneEPAChloromethaneEPAChloromethaneEPAChloromethaneEPAChloromethaneEPACis-1,2-DichloroetheneEPADibromochloromethaneEPADibromochloromethaneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	<0.06865 ug/m3 <0.05456 ug/m3 <0.04047 ug/m3 <0.03965 ug/m3 <0.07421 ug/m3 <0.04916 ug/m3 <0.07684 ug/m3 <0.06012 ug/m3 <0.04047 ug/m3 <0.04047 ug/m3 <0.04047 ug/m3 <0.04916 ug/m3
1,1,2-TrichloroethaneEPA1,1-DichloroethaneEPA1,1-DichloroetheneEPA1,2,4-TrichlorobenzeneEPA1,2,4-TrimethylbenzeneEPA1,2-DibromoethaneEPA1,2-DichlorobenzeneEPA1,2-DichloroethaneEPA1,2-DichloropropaneEPA1,3,5-TrimethylbenzeneEPA1,3-DichlorobenzeneEPA2-ChlorotolueneEPABenzeneEPABenzeneEPABromodichloromethaneEPABromoformEPABromomethaneEPACarbon TetrachlorideEPAChlorobenzeneEPAChloroformEPAChloroformEPAChloroformEPAChloromethaneEPAChloromethaneEPAChloromethaneEPAChloromethaneEPACis-1,2-DichloroetheneEPADibromochloromethaneEPADibromochloromethaneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	<0.05456 ug/m3 <0.04047 ug/m3 <0.03965 ug/m3 <0.07421 ug/m3 <0.04916 ug/m3 <0.07684 ug/m3 <0.06012 ug/m3 <0.04047 ug/m3 <0.04021 ug/m3 <0.04916 ug/m3
1,1-Dichloroethane EPA 1,1-Dichloroethene EPA 1,2,4-Trichlorobenzene EPA 1,2,4-Trimethylbenzene EPA 1,2-Dibromoethane EPA 1,2-Dichlorobenzene EPA 1,2-Dichloropropane EPA 1,3-Dichloropropane EPA 1,3-Dichlorobenzene EPA 1,4-Dichlorobenzene EPA 2-Chlorotoluene EPA Benzene EPA Benzyl chloride EPA Bromodichloromethane EPA Bromoform EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroethane EPA Chloromethane EPA Chloromethane EPA Chloromethane EPA Chlorobenzene EPA Dibromochloromethane EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv	<0.04047 ug/m3 <0.03965 ug/m3 <0.07421 ug/m3 <0.04916 ug/m3 <0.07684 ug/m3 <0.06012 ug/m3 <0.04047 ug/m3 <0.04047 ug/m3 <0.04621 ug/m3 <0.04916 ug/m3
1,1-DichloroetheneEPA1,2,4-TrichlorobenzeneEPA1,2,4-TrimethylbenzeneEPA1,2-DibromoethaneEPA1,2-DichlorobenzeneEPA1,2-DichloroethaneEPA1,2-DichloropropaneEPA1,3,5-TrimethylbenzeneEPA1,3-DichlorobenzeneEPA2-ChlorotolueneEPABenzeneEPABenzyl chlorideEPABromodichloromethaneEPABromoformEPABromomethaneEPACarbon TetrachlorideEPAChlorobenzeneEPAChloroformEPAChloroformEPAChloromethaneEPAChloromethaneEPAChloromethaneEPAChloromethaneEPACis-1,2-DichloroetheneEPACis-1,3-DichloropropeneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	<0.03965 ug/m3 <0.07421 ug/m3 <0.04916 ug/m3 <0.07684 ug/m3 <0.06012 ug/m3 <0.04047 ug/m3 <0.04621 ug/m3 <0.04916 ug/m3
1,2,4-TrichlorobenzeneEPA1,2,4-TrimethylbenzeneEPA1,2-DibromoethaneEPA1,2-DichlorobenzeneEPA1,2-DichloroethaneEPA1,2-DichloropropaneEPA1,3,5-TrimethylbenzeneEPA1,3-DichlorobenzeneEPA2-ChlorotolueneEPABenzeneEPABenzyl chlorideEPABromodichloromethaneEPABromoformEPABromomethaneEPACarbon TetrachlorideEPAChlorobenzeneEPAChloroformEPAChloroformEPAChloromethaneEPAChloromethaneEPAChloromethaneEPAChloromethaneEPACis-1,2-DichloroetheneEPACis-1,3-DichloropropeneEPADibromochloromethaneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	<0.07421 ug/m3 <0.04916 ug/m3 <0.07684 ug/m3 <0.06012 ug/m3 <0.04047 ug/m3 <0.04621 ug/m3 <0.04916 ug/m3
1,2,4-Trimethylbenzene EPA 1,2-Dibromoethane EPA 1,2-Dichlorobenzene EPA 1,2-Dichloropropane EPA 1,2-Dichloropropane EPA 1,3,5-Trimethylbenzene EPA 1,3-Dichlorobenzene EPA 2-Chlorotoluene EPA Benzene EPA Benzyl chloride EPA Bromodichloromethane EPA Bromoform EPA Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroform EPA Chloromethane EPA Chloromethane EPA Cis-1,2-Dichloroethene EPA Dibromochloromethane EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv	<0.04916 ug/m3 <0.07684 ug/m3 <0.06012 ug/m3 <0.04047 ug/m3 <0.04621 ug/m3 <0.04916 ug/m3
1,2-DibromoethaneEPA1,2-DichlorobenzeneEPA1,2-DichloroethaneEPA1,2-DichloropropaneEPA1,3,5-TrimethylbenzeneEPA1,3-DichlorobenzeneEPA1,4-DichlorobenzeneEPA2-ChlorotolueneEPABenzeneEPABenzyl chlorideEPABromodichloromethaneEPABromoformEPABromomethaneEPACarbon TetrachlorideEPAChlorobenzeneEPAChloroformEPAChloroformEPAChloromethaneEPAChloromethaneEPACis-1,2-DichloroetheneEPADibromochloromethaneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	<0.07684 ug/m3 <0.06012 ug/m3 <0.04047 ug/m3 <0.04621 ug/m3 <0.04916 ug/m3
1,2-Dichlorobenzene EPA 1,2-Dichloropropane EPA 1,2-Dichloropropane EPA 1,3,5-Trimethylbenzene EPA 1,3-Dichlorobenzene EPA 1,4-Dichlorobenzene EPA 2-Chlorotoluene EPA Benzene EPA Benzyl chloride EPA Bromodichloromethane EPA Bromoform EPA Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroform EPA Chloroform EPA Chloromethane EPA Cis-1,2-Dichloroethene EPA Dibromochloromethane EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv	<0.06012 ug/m3 <0.04047 ug/m3 <0.04621 ug/m3 <0.04916 ug/m3
1,2-Dichloroethane EPA 1,2-Dichloropropane EPA 1,3,5-Trimethylbenzene EPA 1,3-Dichlorobenzene EPA 1,4-Dichlorobenzene EPA 2-Chlorotoluene EPA Benzene EPA Benzyl chloride EPA Bromodichloromethane EPA Bromoform EPA Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroform EPA Chloromethane EPA Chloromethane EPA Cis-1,2-Dichloroethene EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv	<0.04047 ug/m3 <0.04621 ug/m3 <0.04916 ug/m3
1,2-Dichloropropane EPA 1,3,5-Trimethylbenzene EPA 1,3-Dichlorobenzene EPA 1,4-Dichlorobenzene EPA 2-Chlorotoluene EPA Benzene EPA Benzyl chloride EPA Bromodichloromethane EPA Bromoform EPA Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroethane EPA Chloromethane EPA Chloromethane EPA Cis-1,2-Dichloroethene EPA Cis-1,3-Dichloropropene EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv TO-15 SIM <10.00 pptv TO-15 SIM <10.00 pptv TO-15 SIM <10.00 pptv <p>TO-15 SIM</p>	<0.04621 ug/m3 <0.04916 ug/m3
1,3,5-Trimethylbenzene EPA 1,3-Dichlorobenzene EPA 1,4-Dichlorobenzene EPA 2-Chlorotoluene EPA Benzene EPA Benzyl chloride EPA Bromodichloromethane EPA Bromoform EPA Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroethane EPA Chloromethane EPA Chloromethane EPA cis-1,2-Dichloroethene EPA Dibromochloromethane EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv TO-15 SIM <10.00 pptv TO-15 SIM <10.00 pptv <10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene EPA 1,4-Dichlorobenzene EPA 2-Chlorotoluene EPA Benzene EPA Benzyl chloride EPA Bromodichloromethane EPA Bromoform EPA Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroethane EPA Chloroform EPA Chloromethane EPA cis-1,2-Dichloroethene EPA cis-1,3-Dichloropropene EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv TO-15 SIM <10.00 pptv	_
1,4-DichlorobenzeneEPA2-ChlorotolueneEPABenzeneEPABenzyl chlorideEPABromodichloromethaneEPABromoformEPABromomethaneEPACarbon TetrachlorideEPAChlorobenzeneEPAChloroethaneEPAChloromethaneEPAChloromethaneEPACis-1,2-DichloroetheneEPACis-1,3-DichloropropeneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	
2-Chlorotoluene EPA Benzene EPA Benzyl chloride EPA Bromodichloromethane EPA Bromoform EPA Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chlorotomethane EPA Chlorotomethane EPA Chlorotomethane EPA Chlorotomethane EPA Chlorotomethane EPA Chloromethane EPA Chloromethane EPA Chloromethane EPA Chloromethane EPA Chloromethane EPA Cis-1,2-Dichloropropene EPA Dibromochloromethane EPA	• • • • • • • • • • • • • • • • • • • •	<0.06012 ug/m3
Benzene EPA Benzyl chloride EPA Bromodichloromethane EPA Bromoform EPA Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroethane EPA Chloroform EPA Chloroform EPA Chloromethane EPA Chloromethane EPA Chloromethane EPA Cis-1,2-Dichloroethene EPA Cis-1,3-Dichloropropene EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv	<0.06012 ug/m3
Benzyl chlorideEPABromodichloromethaneEPABromoformEPABromomethaneEPACarbon TetrachlorideEPAChlorobenzeneEPAChloroethaneEPAChloroformEPAChloromethaneEPAcis-1,2-DichloroetheneEPAcis-1,3-DichloropropeneEPADibromochloromethaneEPA		<0.05177 ug/m3
Bromodichloromethane EPA Bromoform EPA Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroethane EPA Chloroform EPA Chloromethane EPA Chloromethane EPA Cis-1,2-Dichloroethene EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv	
Bromodichloromethane EPA Bromoform EPA Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroethane EPA Chloroform EPA Chloromethane EPA Cis-1,2-Dichloroethene EPA cis-1,3-Dichloropropene EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv	_
Bromomethane EPA Carbon Tetrachloride EPA Chlorobenzene EPA Chloroethane EPA Chloroform EPA Chloromethane EPA cis-1,2-Dichloroethene EPA cis-1,3-Dichloropropene EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv	
Carbon TetrachlorideEPAChlorobenzeneEPAChloroethaneEPAChloroformEPAChloromethaneEPAcis-1,2-DichloroetheneEPAcis-1,3-DichloropropeneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	9
ChlorobenzeneEPAChloroethaneEPAChloroformEPAChloromethaneEPAcis-1,2-DichloroetheneEPAcis-1,3-DichloropropeneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	<u> </u>
ChloroethaneEPAChloroformEPAChloromethaneEPAcis-1,2-DichloroetheneEPAcis-1,3-DichloropropeneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	
ChloroformEPAChloromethaneEPAcis-1,2-DichloroetheneEPAcis-1,3-DichloropropeneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	9
ChloroformEPAChloromethaneEPAcis-1,2-DichloroetheneEPAcis-1,3-DichloropropeneEPADibromochloromethaneEPA	TO-15 SIM <10.00 pptv	
cis-1,2-Dichloroethene EPA cis-1,3-Dichloropropene EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv	_
cis-1,3-Dichloropropene EPA Dibromochloromethane EPA	TO-15 SIM <100.0 pptv	_
cis-1,3-Dichloropropene EPA Dibromochloromethane EPA	TO-15 SIM <10.00 pptv	
	TO-15 SIM <10.00 pptv	_
	TO-15 SIM <10.00 pptv	
Ethylbenzene EPA	TO-15 SIM <10.00 pptv	
•	TO-15 SIM <10.00 pptv	
Freon 114 EPA	TO-15 SIM <10.00 pptv	_
Freon 12 EPA	TO-15 SIM <10.00 pptv	•
Hexachlorobutadiene EPA	TO-15 SIM <10.00 pptv	
	TO-15 SIM <10.00 pptv	
	TO-15 SIM <20.00 pptv	_
	TO-15 SIM <10.00 pptv	_
•	TO-15 SIM <10.00 pptv	
	TO-15 SIM <10.00 pptv	•
•	TO-15 SIM <10.00 pptv	_
	TO-15 SIM <10.00 pptv	•
	TO-15 SIM <10.00 pptv	_
	TO-15 SIM <10.00 pptv	
• •	TO-15 SIM <10.00 pptv	•
	TO-15 SIM <10.00 pptv	•
	TO-15 SIM <10.00 pptv	_
Vinyl Chloride EPA	10-13 Olivi 10.00 DDIV	<0.02556 ug/m3

16 of 19 319

Check Run: 374364761015 Analysis Date/Time: 09-SEP-2024 18:04:00 Equipment ID: C70059

C70059 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.04200 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.00769 ug/m3
trans-1,2-Dichloroethene	EPA TO-13 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,3-Dichloropropene	EPA TO-13 SIM	<10.00 pptv	<0.03903 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.03616 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3
viriyi Criiofide	EFA 10-13 SIIVI	< 10.00 pptv	<0.02000 ug/ff13

17 of 19 320

Check Run: 504384909015 Analysis Date/Time: 23-SEP-2024 17:55:00 Equipment ID: C70932

Result	Result	Method	C70932 Analyte
<0.06865 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,1,2-Tetrachloroethane
<0.05456 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,1-Trichloroethane
<0.06865 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,2,2-Tetrachloroethane
<0.05456 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1,2-Trichloroethane
<0.04047 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1-Dichloroethane
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,1-Dichloroethene
<0.07421 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2,4-Trichlorobenzene
<0.04916 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2,4-Trimethylbenzene
<0.07684 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dibromoethane
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichlorobenzene
<0.04047 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichloroethane
<0.04621 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,2-Dichloropropane
<0.04916 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,3,5-Trimethylbenzene
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,3-Dichlorobenzene
<0.06012 ug/m3	<10.00 pptv	EPA TO-15 SIM	1,4-Dichlorobenzene
<0.05177 ug/m3	<10.00 pptv	EPA TO-15 SIM	2-Chlorotoluene
<0.03195 ug/m3	<10.00 pptv	EPA TO-15 SIM	Benzene
<0.05177 ug/m3	<10.00 pptv	EPA TO-15 SIM	Benzyl chloride
<0.06701 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromodichloromethane
<0.1034 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromoform
<0.03883 ug/m3	<10.00 pptv	EPA TO-15 SIM	Bromomethane
<0.06291 ug/m3	<10.00 pptv	EPA TO-15 SIM	Carbon Tetrachloride
<0.04604 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chlorobenzene
<0.02639 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chloroethane
<0.04883 ug/m3	<10.00 pptv	EPA TO-15 SIM	Chloroform
<0.2065 ug/m3	<100.0 pptv	EPA TO-15 SIM	Chloromethane
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	cis-1,2-Dichloroethene
<0.04539 ug/m3	<10.00 pptv	EPA TO-15 SIM	cis-1,3-Dichloropropene
<0.08519 ug/m3	<10.00 pptv	EPA TO-15 SIM	Dibromochloromethane
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	Ethylbenzene
<0.07664 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 113
<0.06991 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 114
<0.04945 ug/m3	<10.00 pptv	EPA TO-15 SIM	Freon 12
<0.1067 ug/m3	<10.00 pptv	EPA TO-15 SIM	Hexachlorobutadiene
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	m,p-Xylenes
<0.06947 ug/m3	<20.00 pptv	EPA TO-15 SIM	Methylene Chloride
<0.05242 ug/m3	<10.00 pptv	EPA TO-15 SIM	Naphthalene
<0.04342 ug/m3	<10.00 pptv	EPA TO-15 SIM	o-Xylene
<0.04260 ug/m3	<10.00 pptv	EPA TO-15 SIM	Styrene
<0.06783 ug/m3	<10.00 pptv	EPA TO-15 SIM	Tetrachloroethene
<0.03769 ug/m3	<10.00 pptv	EPA TO-15 SIM	Toluene
<0.03965 ug/m3	<10.00 pptv	EPA TO-15 SIM	trans-1,2-Dichloroethene
<0.04539 ug/m3	<10.00 pptv	EPA TO-15 SIM	trans-1,3-Dichloropropene
<0.05374 ug/m3	<10.00 pptv	EPA TO-15 SIM	Trichloroethene
<0.05618 ug/m3	<10.00 pptv	EPA TO-15 SIM	Trichlorofluoromethane
<0.04374 ug/m3	<10.00 pptv	EPA TO-15 SIM	Vinyl bromide
<0.02556 ug/m3	<10.00 pptv	EPA TO-15 SIM	Vinyl Chloride

Check Run: 504377891028 Analysis Date/Time: 19-SEP-2024 07:16:00 Equipment ID: C70309

C70309 Analyte	Method	Result	Result
1,1,1,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,1-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1,2,2-Tetrachloroethane	EPA TO-15 SIM	<10.00 pptv	<0.06865 ug/m3
1,1,2-Trichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.05456 ug/m3
1,1-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,1-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
1,2,4-Trichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.07421 ug/m3
1,2,4-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,2-Dibromoethane	EPA TO-15 SIM	<10.00 pptv	<0.07684 ug/m3
1,2-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,2-Dichloroethane	EPA TO-15 SIM	<10.00 pptv	<0.04047 ug/m3
1,2-Dichloropropane	EPA TO-15 SIM	<10.00 pptv	<0.04621 ug/m3
1,3,5-Trimethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04916 ug/m3
1,3-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
1,4-Dichlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.06012 ug/m3
2-Chlorotoluene	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Benzene	EPA TO-15 SIM	<10.00 pptv	<0.03195 ug/m3
Benzyl chloride	EPA TO-15 SIM	<10.00 pptv	<0.05177 ug/m3
Bromodichloromethane	EPA TO-15 SIM	<10.00 pptv	<0.06701 ug/m3
Bromoform	EPA TO-15 SIM	<10.00 pptv	<0.1034 ug/m3
Bromomethane	EPA TO-15 SIM	<10.00 pptv	<0.03883 ug/m3
Carbon Tetrachloride	EPA TO-15 SIM	<10.00 pptv	<0.06291 ug/m3
Chlorobenzene	EPA TO-15 SIM	<10.00 pptv	<0.04604 ug/m3
Chloroethane	EPA TO-15 SIM	<10.00 pptv	<0.02639 ug/m3
Chloroform	EPA TO-15 SIM	<10.00 pptv	<0.04883 ug/m3
Chloromethane	EPA TO-15 SIM	<100.0 pptv	<0.2065 ug/m3
cis-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
cis-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Dibromochloromethane	EPA TO-15 SIM	<10.00 pptv	<0.08519 ug/m3
Ethylbenzene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Freon 113	EPA TO-15 SIM	<10.00 pptv	<0.07664 ug/m3
Freon 114	EPA TO-15 SIM	<10.00 pptv	<0.06991 ug/m3
Freon 12	EPA TO-15 SIM	<10.00 pptv	<0.04945 ug/m3
Hexachlorobutadiene	EPA TO-15 SIM	<10.00 pptv	<0.1067 ug/m3
m,p-Xylenes	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Methylene Chloride	EPA TO-15 SIM	<20.00 pptv	<0.06947 ug/m3
Naphthalene	EPA TO-15 SIM	<10.00 pptv	<0.05242 ug/m3
o-Xylene	EPA TO-15 SIM	<10.00 pptv	<0.04342 ug/m3
Styrene	EPA TO-15 SIM	<10.00 pptv	<0.04260 ug/m3
Tetrachloroethene	EPA TO-15 SIM	<10.00 pptv	<0.06783 ug/m3
Toluene	EPA TO-15 SIM	<10.00 pptv	<0.03769 ug/m3
trans-1,2-Dichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.03965 ug/m3
trans-1,3-Dichloropropene	EPA TO-15 SIM	<10.00 pptv	<0.04539 ug/m3
Trichloroethene	EPA TO-15 SIM	<10.00 pptv	<0.05374 ug/m3
Trichlorofluoromethane	EPA TO-15 SIM	<10.00 pptv	<0.05618 ug/m3
Vinyl bromide	EPA TO-15 SIM	<10.00 pptv	<0.04374 ug/m3
Vinyl Chloride	EPA TO-15 SIM	<10.00 pptv	<0.02556 ug/m3
·		''	

19 of 19 **322**

Appendix F

Laboratory Analytical Reports – 24 Hour Ssamples

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\AUG2024\AUG30\

Data File : 30AUG15.D

Acq On : 31 Aug 2024 5:15 am

Operator : BEP

: BLK-626

: * Misc

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Sep 03 09:56:48 2024

Quant Method: C:\msdchem\1\methods\2024\202408\23-1041\TO15_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 23 14:02:10 2024

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 8.495 10.881	49 114 117	22673 48789 30168	500.00 500.00 500.00	pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000	. 11.711 Range 50	95 - 150		443.06 ry =	pptv 88.61%	0.00
Target Compounds		- -			Qva	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

(QT Reviewed)

Quantitation Report

No Name Entered

Time-->

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP11\

Data File : 11SEP16.D

Acq On : 12 Sep 2024 4:08 am

Operator : BEP
Sample : blk-813 24/6470-02

Misc : *

: * Misc

Sample Multiplier: 1 ALS Vial : 12

Quant Time: Sep 12 08:47:59 2024

Quant Method : C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M

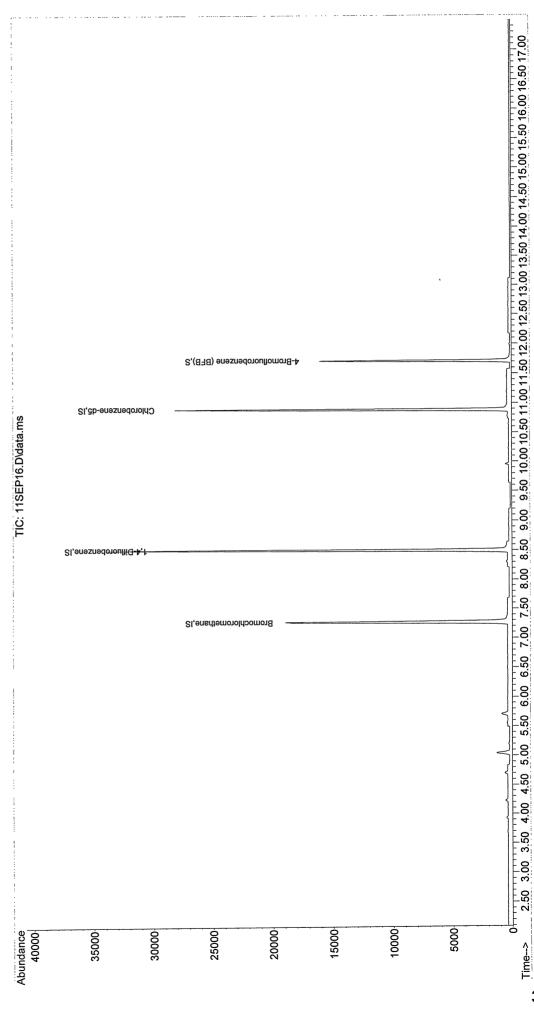
Quant Title : TO-15 Vapor analysis QLast Update: Wed Sep 04 09:00:16 2024 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 8.495 10.883	49 114 117	18517 36448 22027	500.00 500.00 500.00	pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000 R		95 - 150	10712 Recove	424.31 ry =		0.00
Target Compounds					Qva	alue

C:\msdchem\1\data\2024\SEP2024\SEP11\
11SEP16.D Data Path

Data File

4:08 am 12 Sep 2024 BEP Acg On


b1k-813 Operator Sample

Misc

Sample Multiplier: 1 ALS Vial

Sep 12 08:47:59 2024
1 : C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M Method: Title Quant Quant Quant

: TO-15 Vapor analysis : Wed Sep 04 09:00:16 2024 : Initial Calibration Olast Update Response via

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP11\

Data File : 11SEP08.D

Acq On : 11 Sep 2024 11:18 pm Operator : BEP

: blk-794 Sample

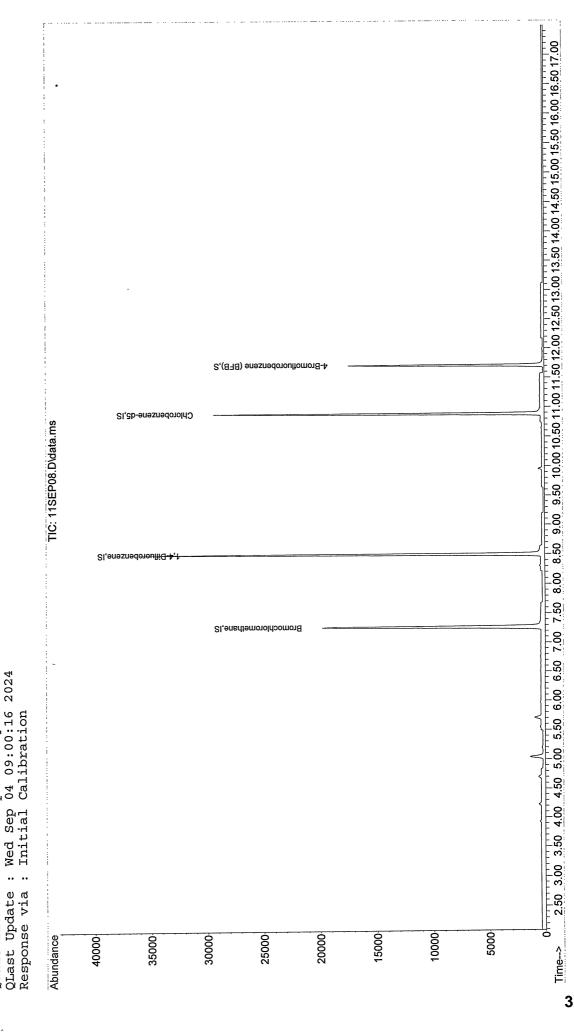
Misc

: 4 Sample Multiplier: 1 ALS Vial

Quant Time: Sep 12 09:36:31 2024

Quant Method : C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Wed Sep 04 09:00:16 2024 Response via: Initial Calibration


Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 8.495 10.883	49 114 117	19100 38859 23234	500.00 500.00 500.00	pptv	0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000 1		95 - 150		434.07 ry =	pptv 86.81%	0.00
Target Compounds					Qva	alue

: TO-15 Vapor analysis

QLast Update

Title

Quant

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP11\

Data File : 11SEP07.D

Acq On : 11 Sep 2024 10:41 pm Operator : BEP

2416470-04 : blk-37493 Sample

Misc : 13-919

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Sep 12 09:36:02 2024

Quant Method : C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Wed Sep 04 09:00:16 2024

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.260 8.495 10.883	49 114 117	18967 38791 23172	500.00 500.00 500.00	pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000	. 11.708 Range 50	95 - 150	11368 Recove	428.04 ry =		0.00
Target Compounds					Qv:	alue

C:\msdchem\1\data\2024\SEP2024\SEP11\
11SEP07.D Path Data File

10:41 pm 11 Sep 2024 BEP

blk-37493 13-919 Acq On Operator Sample

Sample Multiplier: Misc ALS Vial Sep 12 09:36:02 2024 | : C:\msdchem\1\methods\2024\202409\03-2116\TO15_SIM.M Method Time: Quant Quant

: Wed Sep 04 09:00:16 2024 : Initial Calibration TO-15 Vapor analysis QLast Update Response via Title Quant

Time-->

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP11\

Data File : 11SEP18.D

Acq On : 12 Sep 2024 5:21 am

Operator : BEP

Sample : blk-c8346

: * Misc

ALS Vial: 14 Sample Multiplier: 1

Quant Time: Sep 12 09:49:13 2024

Quant Method: C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Wed Sep 04 09:00:16 2024

Response via : Initial Calibration

Compound	R.T. Q	Ion Resp	onse Conc U	nits Dev(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	0.150	114 36	330 500.00 954 500.00 687 500.00	pptv 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000	. 11.711 Range 50 -		295 434.39 ecovery =	pptv 0.00 86.88%
Target Compounds 6) Acetone	5.041	58 3	173 163.89	Qvalue 83 pptv # 64

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path: C:\msdchem\1\data\2024\SEP2024\SEP11\
Data File: 11SEP18.D
Acq On: 12 Sep 2024 5:2j am
Operator: BEP
Sample: blk-c8346
Misc: *
ALS Vial: 14 Sample Multiplier: 1

: C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M : Wed Sep 04 09:00:16 2024 : Initial Calibration TO-15 Vapor analysis 12 09:49:13 2024 Sep Method Olast Update Response via Time: Quant Title Quant Quant

7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.50 11.50 12.00 12.50 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 4-Bromofluorobenzene (BFB),S Chlorobenzene-d5,1S TIC: 11SEP18.D\data.ms 21, an a znadonoufiid-4 Bremochloromethane,1S 5.50 6.00 6.50 7.00 2.50 3.00 3.50 4.00 4.50 5.00 Acetone 10000 5000 25000 20000 15000 Abundance 40000 30000 35000 Time-->

Quantitation Report (QT Reviewed) No Name Entered

2417-2416470-06 : blk-747 Sample

: * Misc

Sample Multiplier: 1 ALS Vial : 10

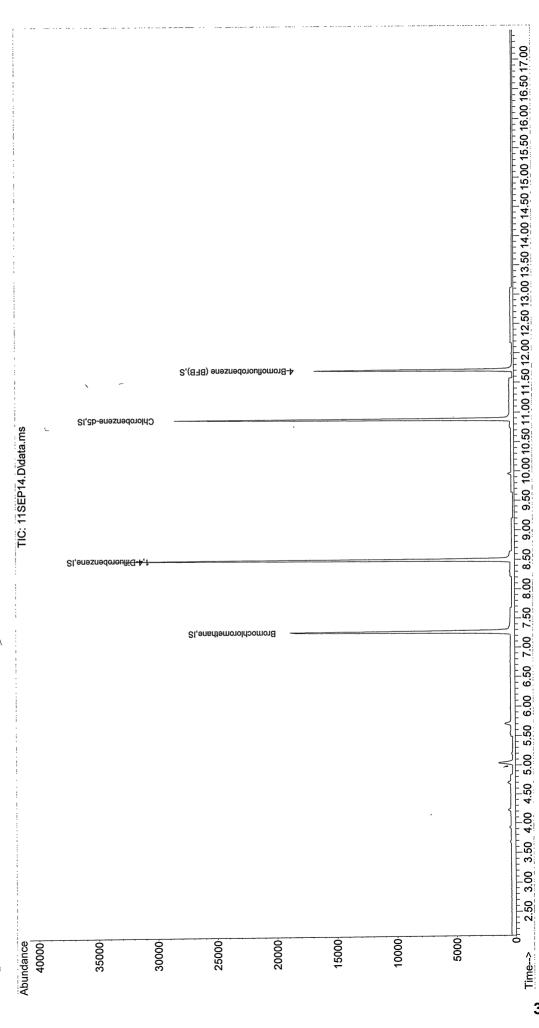
Quant Time: Sep 12 08:46:59 2024

Quant Method: C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update: Wed Sep 04 09:00:16 2024

Response via: Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 8.495 10.883	49 114 117	18347 36699 22358	500.00 500.00 500.00	pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (. Spiked Amount 500.000		95 - 150	11236 Recove	438.48 ery =	pptv 87.70%	0.00
Target Compounds					QV	alue


Data Path : C:\msdchem\1\data\2024\SEP2024\SEP11\ Data File : 11SEP14.D

Acq On : 12 Sep 2024 2:56 am Operator : BEP

Operator : BEP Sample : blk-747

Misc : * ALS Vial : 10 Sample Multiplier: 1 Time: Sep 12 08:46:59 2024 Method : C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M Quant Quant

Quant Title : TO-15 Vapor analysis QLast Update : Wed Sep 04 09:00:16 2024 Response via : Initial Calibration

No Name Entered Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\JUL2024\JUL09\

Data File : 09JUL12.D

Acq On : 9 Jul 2024 9:09 pm

Operator : BEP Sample : blk-616 2416470-07

Misc : 13-825

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jul 10 13:46:08 2024

Quant Method: C:\msdchem\1\methods\2024\202406\26-2146\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Thu Jun 27 12:10:39 2024

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Bromochloromethane	7.659	49	21792	500.00	pptv	0.00
20) 1,4-Difluorobenzene 28) Chlorobenzene-d5	8.843 11.188	114 117	48485 39323	500.00 500.00	pptv	0.00
System Monitoring Compounds 34) 4-Bromofluorobenzene (Spiked Amount 500.000	12.027	95 - 150	22550 Recove	481.58 ery =		0.00
Target Compounds				₽	QV	alue

C:\msdchem\1\data\2024\JUL2024\JUL09\ 09JUL12.D Data Path

Data File

9 Jul 2024 Acq On

md 60:6

Operator

blk-616 Sample

13-825 Misc ALS Vial

Sample Multiplier:

C:\msdchem\1\methods\2024\202406\26-2146\T015 Time: Jul 10 13:46:08 2024 Quant Time: Jul Quant Method Quant

Thu Jun 27 12:10:39 2024

QLast Update Response via

Initial Calibration

3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 TIC: 09JUL12.D\data.ms 45000 40000 35000 30000 25000-50000

No Name Entered Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP11\

Data File : 11SEP06.D

Acq On : 11 Sep 2024 10:06 pm

Operator : BEP

Sample : blk-35416 24/6470-00

Misc : 13-918

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Sep 12 09:35:40 2024

Quant Method: C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Wed Sep 04 09:00:16 2024 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.260 8.495 10.883	49 114 117	18249 37543 22820	500.00 500.00 500.00	pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (. Spiked Amount 500.000		95 - 150		460.99 ery =		0.00
Target Compounds					Qv:	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

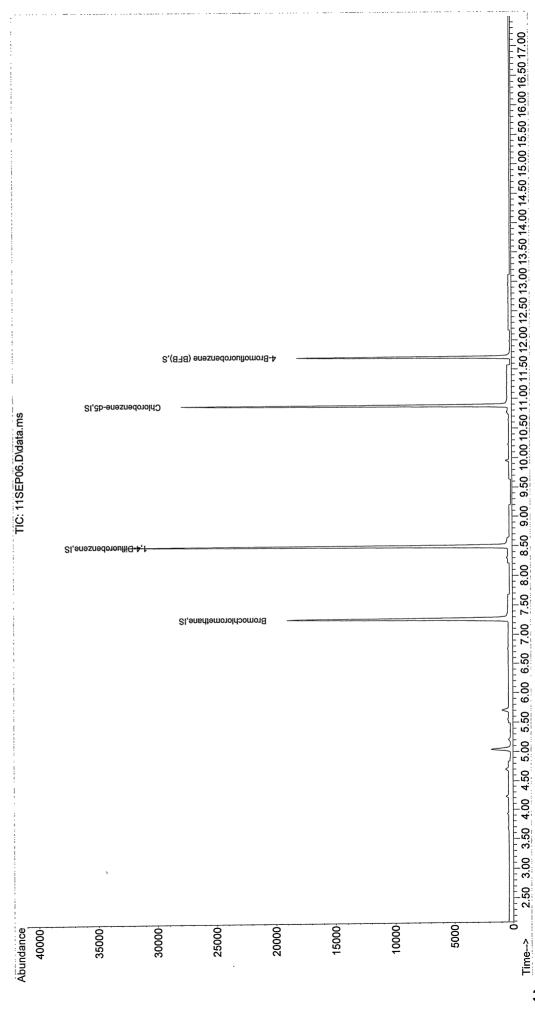
F..

C:\msdchem\1\data\2024\SEP2024\SEP11\
11SEP06.D Data Path

Data File

10:06 pm 11 Sep 2024 Acq On

BEP blk-35416 Operator Sample


Sample Multiplier: 13-918 ALS Vial Misc

12 09:35:40 2024 Sep Time: Quant

: C:\msdchem\1\methods\2024\202409\03-2116\T015 SIM.M Method Quant

: Wed Sep 04 09:00:16 2024 : Initial Calibration : TO-15 Vapor analysis QLast Update Title Quant

Response via

No Name Entered Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\AUG2024\AUG06\

Data File : 06AUG11.D

Acq On : 6 Aug 2024 8:53 pm

Operator : BEP Sample : blk-762 24/6470 0

Misc : *

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Aug 06 22:57:08 2-024

Quant Method : C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M

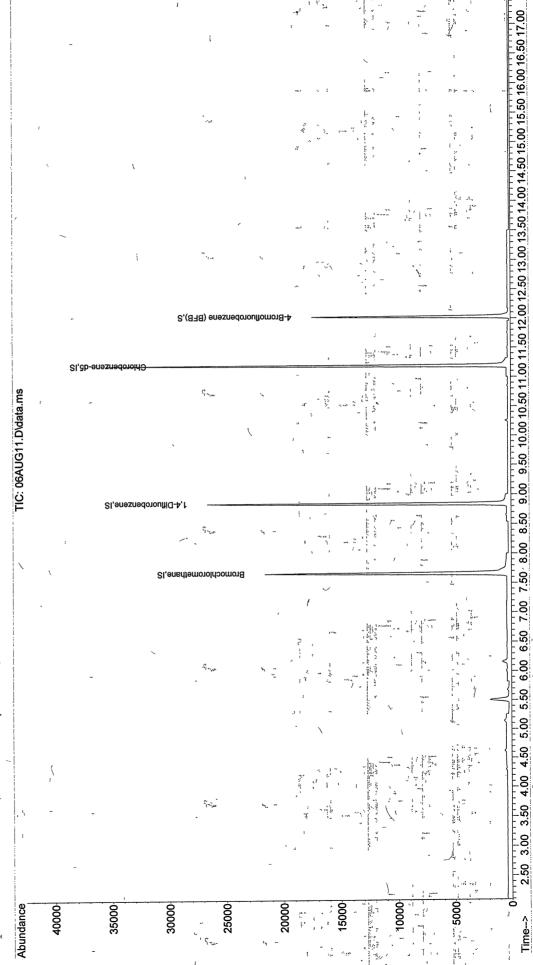
Quant Title : TO-15 Vapor analysis

QLast Update: Fri Aug 02 14:17:01 2024 Response via: Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)~
Internal Standards						
1) Bromochloromethane	7.658	49	15836	500.00		0.00
20) 1,4-Difluorobenzene	8.842	114	32095	500.00	pptv	. 0.00-
28) Chlorobenzene-d5	11.186	117	29685	500.00	pptv ¦	0.00
System Monitoring Compounds					£ ,	****
34) 4-Bromofluorobenzene (.	12.025	95	12149	369,05	pptv	0.00
Spiked Amount 500.000	Range 50	- 150	Recove	ery =	73.81%	trin.
Target Compounds					QVa	alue

C:\msdchem\1\data\2024\AUG2024\AUG06\ 06AUG11.D 8:53 Data Path Data File

6 Aug 2024 Acq On


шď

blk-762 BEP Operator Sample

Misc

Sample Multiplier: ALS Vial

C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M 02 14:17:01 2024 ro-15 Vapor analysis Calibration 06 22:57:08 2024 Initial Time: Aug Method: QLast Update Response via Title Quant Quant Quant

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP11\

Data File : 11SEP17.D

Acq On : 12 Sep 2024 4:44 am Operator : BEP

: blk-0169 2416470-10 Sample

Misc

Sample Multiplier: 1 ALS Vial : 13

Quant Time: Sep 12 09:48:36 2024

 $\label{eq:Quant_Method} \begin{tabular}{ll} $$ Quant Method: C:\msdchem\1\methods\2024\202409\03-2116\TO15_SIM.M. $$ $$ $$$

Quant Title : TO-15 Vapor analysis QLast Update : Wed Sep 04 09:00:16 2024

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 8.495 10.881	49 114 117	18011 35717 21862	500.00 500.00 500.00	pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000 F		95 - 150	10719 Recove	427.79 ery =	pptv 85.56%	0.00
Target Compounds					Qv 	alue

24 315_SIM.M Tue Oct 29 16:04:45 2024 ECD1

(QT Reviewed)

Quantitation Report (QT Reviewed) No Name Entered Data Path: C:\msdchem\1\data\2024\AUG2024\AUG01\ 11/04/24 Data File: 01AUG34.D : 2 Aug 2024 Operator : BEP : BLK-684 Sample Sample Multiplier: 1 ALS Vial : 10 Quant Time: Aug 02 15:00:52 2024 Quant Method: C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 02 14:17:01 2024 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Compound Internal Standards 500.00 pptv : 13527 7.658 49 1) Bromochloromethane 500.00 pptv 8.842 114 28914 20) 1,4-Difluorobenzene 11.186 117 27068 500.00 pptv 28) Chlorobenzene-d5 System Monitoring Compounds 10382 345.87 pptv 30.00 34) 4-Bromofluorobenzene (... 12.025 95 Spiked Amount 500.000 Range 50 - 150 Target Compounds

(QT Reviewed)

C:\msdchem\1\data\2024\AUG2024\AUG01\ Data Path

2:40 pm

2 Aug 2024 01AUG34.D Data File Acq On

BLK-684 BEP Operator Sample

Sample Multiplier: 10 ALS Vial Misc

r 02 15:00:52 2024 C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M 02 14:17:01 2024 TO-15 Vapor analysis Fri Aug initial Time: Aug Method: Title 👃 : QLast Update : Quant Quant Quant

Calibration

Response via :

2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 TIC: 01AUG34.D\data.ms 47 4000 24000 20000 8000 16000 14000 2000 0000 8000 9009 2000 Abunggange, 26000 22000 32000 30000 28000 36000 34000

No Name Entered Quantitation Report Data Path : C:\msdchem\1\data\2024\AUG2024\AUG06__ Data File : 06AUG20 D : 8 Aug 2024 Acq On 8:29 pm 2416470 - 12 Operator : BEP : BLK-27754 Sample Misc : 13-874 Sample Multiplier: 1 ALS Vial : 3 Quant Time: Aug 15 15:15:02 2024 Quant Method: C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 02 14:17:01 2024 Response via : Initial Calibration R.T. QIon Response Conc Units Dev (Min) Compound Internal Standards 500.00 pptv # 0.00 500.00 pptv 0.00 500.00 pptv 0.00 1) Bromochloromethane 7.658 49 16494 29077 20) 1,4-Difluorobenzene 8.842 114 29355 28) Chlorobenzene d5 11.186 117 System Monitoring Compounds 34) 4-Bromofluorobenzene (... 12.025 95 13169 404.53 pptv . 0.00... Spiked Amount 500.000 Range 50 - 150 Recovery = 80.91%

Target Compounds

Qvalu

C:\msdchem\1\data\2024\AUG2024\AUG06\ Data Path Data File :

8 Aug 2024 06AUG20.D

8:29 pm

Acq On Operator

BLK-27754 Sample Misc

13-874

Sample Multiplier: 1 ALS Vial

Quant Time: Aug 15 15:15:02 2024 Quant Method : C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M Olast Update : Fri Aug 02 14:17:01 2024 Response via : Initial Calibration 🔭 TO-15 Vapor analysis Quant Title

48 15_SIM.M Tue Oct 29 15:48:41 2024 ECD1 Time-->

No Name Entered Quantitation Report (QT Reviewed)

Data Path): C:\msdchem\1\data\2024\AUG2024\AUG06\

Data File: 06AUG10.D

Acq On : 6 Aug 2024 8:07 pm

Operator : BEP

Sample : blk-681 24/6470-()

Misc : *

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Aug 06 20:54:21 2024

Quant Method: C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 02 14:17:01 2024

Response via : Initial Calibration

Compound	R.T. QIon	Response	Conc Units Dev(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 28) Chlorobenzene-d5	7.658 49 8.842 114 11.186 117	31158	500.00 pptv # 0.00 500.00 pptv 0.00 500.00 pptv 0.00
System Monitoring Compounds 34) 4-Bromofluorobenzene (Spiked Amount 500.000 R	12.025 95 Range 50 - 15		
Target Compounds			Qvalue
		7.4	3

C:\msdchem\1\data\2024\AUG2024\AUG06\

06AUG10.D Data File

8:07 pm ,6 Aug 2024 BEP Acq On

Operator

blk-681 Sample Misc

Sample Multiplier: 1 ALS Vial Quant Time: Aug 06 20:54:21 2024 Quant Method : C:\msdchem\1\methods\2024\202408\01-2136\TO15_SIM.M

TO-15 Vapor analysis Quant Title

QLast Update : Fri Aug 02 14:17:01 2024 Response via : Initial Calibration

Abundance	Φ.	1)			TIC: 06AU	TIC: 06AUG10.D\data.ms	sm			e e			
40000	· · ·	ŧ	, 1	í			\	i	3 P		1		*	
35000	-	•		•		SI, ana		SI, 3b-eneznedo	~			~	~	
30000		r	ζ.	21 000	SI,ens (oznedorotenza /		Chloro	8'(J			
25000		-	1 de 1500 d	. g-w-	unochlorometh		*** **********************************		ppenzene (BFB)		1 Q _#			· 9
20000	h	:	.c. by	ь _ю ,	ng	*	šų,		,' <u>,</u> Pronnofluoro		/	,		
\$ °	A STATE OF THE STA	i F		, , , , , , , , , , , , , , , , , , ,	\ en	*** ** 1	4,k		તે વ્યુ ત			in the second	". d	
15000	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	in a	111 0	1	i,,	5 * · · · · · · · · · · · · · · · · · ·	\	y ve	• •	8 5 9 9	ξ.		
Baird on	The state of the s	Politica to the time to the ti	The stayment to shall the same a little for the stay of the same and t	A THE STREET AND A STREET AND A STREET AND ASSESSED ASSES	A TOTAL		The ser services	}	415	The state of the s	A complete to the second of th		; *	
10000	***)	and do	A way	T ; .		~ · ·		+	÷. 4)	± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1	£ , d.	/ ~ ·	
T I		manum da da da	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Program		7'			:)		2		*****	
2000	Of the state of th	ne eds n 49 bagt 1975ta er finderfannungt n		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	To the life of the	1	5 % TY	Ļ ¹	1, ,				2 to 1	
				į	,					ı				

7.50 U.3.50 4.00 4.50 5.50 5.50 5.50 5.50 6.50 **6** 15_SIM.M Tue Oct 29 15:47:11 2024 ECD1 Time-->

Page: 2

Quantitation Report (QT Reviewed) No Name Entered

Data Path : |C:\msdchem\1\data\2024\JUL2024\JUL02\

Data File: `02JUL19.D

-- 3 Jul 2024 6:35 am

: BEP Operator

Sample

Sample Multiplier: 1

Quant Time: Jul 03 14:34:20 2024

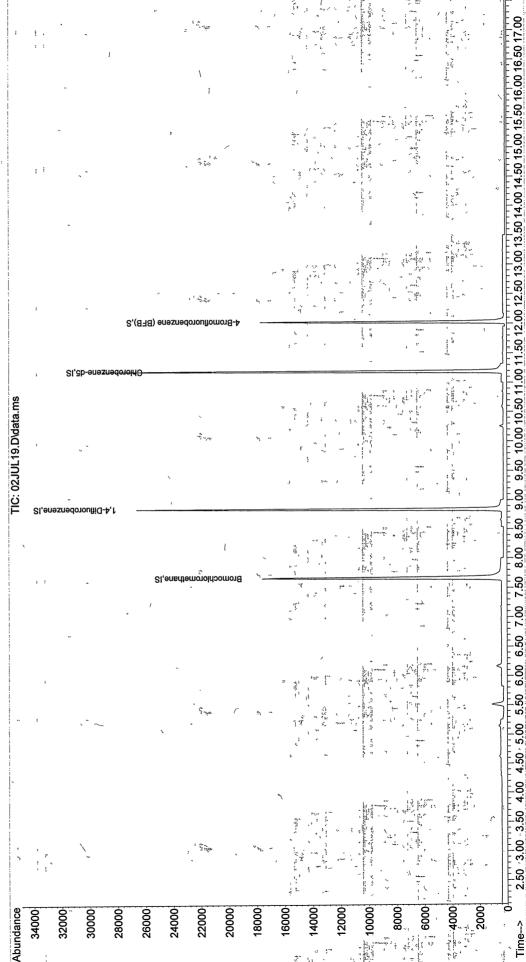
Quant Method: C:\msdchem\1\methods\2024\202406\26-2146\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Thu Jun 27 12:10:39 2024

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev (Min)
Internal Standards			, -,	
 Bromochloromethane 	7.658	49	15571	500.00 pptv 🕟 0.00
20)′1,4-Difluorobenzene	8.842	114	30837	500.00 pptv 1 0.00
28) Chlorobenzene-d5	11.186	117	25519	500.00 pptv 0.00
46.2.4	12.025 inge 50	95 - 150	12287 Recove	
Target Compounds	***		***************************************	Qvalue

C:\msdchem\1\data\2024\JUL2024\JUL02\
02JUL19.D Data Path


3 Jul 2024

blk-484 Acq On Operator Sample Misc ALS Vial

Sample Multiplier: 14 Quant

Time: Jul 03 14:34:20 2024 Method : C:\msdchem\1\methods\2024\202406\26-2146\T015 Quant Quant

Thu Jun 27 12:10:39 2024 Calibration Response via : Initial Olast Update ::

SIM.M Mon Nov 04 16:34:41 2024 ECD

No Name Entered Quantitation Report (QT Reviewed)

Data Path : $C:\msdchem\1\data\2024\AUG2024\AUG06\$

Data File : 06AUG06.D

Acq On : 6 Aug 2024 5:00 pm

Operator : BEP

Sample : b1k-685 24 6470 - 0

Misc : 13-

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Aug 06 16:21:33 2024

Quant Method: C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 02 14:17:01 2024 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	s Dev(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 28) Chlorobenzene-d5	7.659 8.843 11.187	49 114 117	32738	500.00 ppt 500.00 ppt 500.00 ppt	tv 🗽 0.0

System Monitoring Compounds

Target Compounds

34) 4-Bromofluorobenzene (... 12.027 95 12029 353.08 pptv 0.00

Spiked Amount 500.000 Range 50 - 150 Recovery = 70.62%

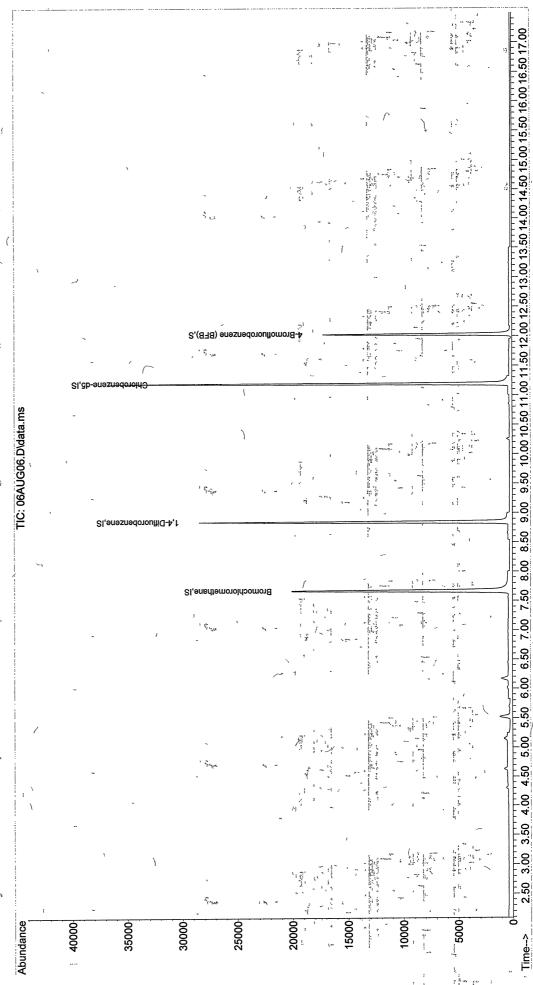
· 1833

C:\msdchem\1\data\2024\AUG2024\AUG06\
06AUG06.D Data Path Data File

5:00 pm 6 Aug 2024 Acq On

BEP Operator

blk-685 Sample


Sample Multiplier: ALS Vial Misc

06 16:21:33 2024 Aug Quant | Quant |

C:\msdchem\1\methods\2024\202408\01-2136\T015 SIM.M 70–15. Vapor analysis Method Quant

02 14:17:01 2024

Initial Calibration QLast Update Response via

Page:

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\AUG2024\AUG06\

Data File: 06AUG07.D

: 6 Aug 2024 5:49 pm

Operator : BEP 2416470-16 : blk-27756

: 13-Misc

: 3 Sample Multiplier: 1 ALS Vial

Quant Time: Aug 06 18:22:24 2024

Quant Method : C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update: Fri Aug 02 14:17:01 2024 Response via: Initial Calibration

Compound	, R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 28) Chlorobenzene-d5	7.658 8.842 11.186	49 114 117	15667 31337 29753	500.00 500.00 500.00	pptv	# 0.00 0.00 0.00
System Monitoring Compounds 34) 4-Bromofluorobenzene (Spiked Amount 500.000	. 12.025 Range 50	95 - 150		359.18	pptv 71.84%	0.00
Target Compounds					QV	alue

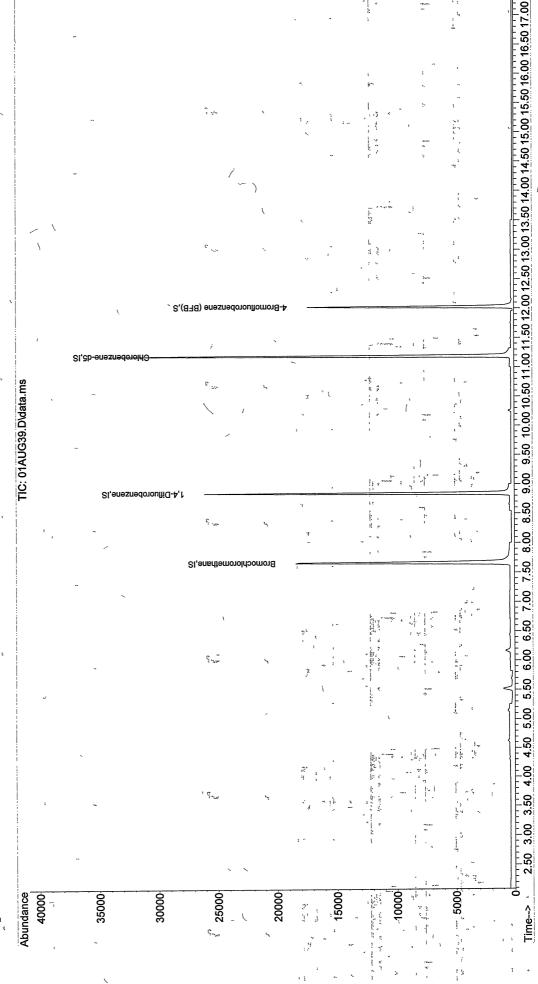
Page: 2

Quantitation Report (QT Reviewed) No Name Entered Data Path : C:\msdchem\1\data\2024\AUG2024\AUG01\ Data File: 01AUG39,D : 2 Aug 2024 : BEP Acq On 6:32 pm : BEP Operator Sample : BLK-819 Misc Sample Multiplier: 1 ALS Vial: 15 Quant Time: Aug 02 19:00:59 2024 Quant Method : C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 02 14:17:01 2024 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min): Compound Internal Standards 500.00 pptv 7.658 49 14119 1) Bromochloromethane 29808 500.00 pptv 8.842 114 20) 1,4-Difluorobenzene 117 28750 500.00 pptv 28) Chlorobenzene-d5 11.186 System Monitoring Compounds 375.25 pptv 🚟 0.00 11964 34) 4-Bromofluorobenzene (... 12.025 95 75.05% 500.000 Range 50 - 150 Recovery Spiked Amount

Target Compounds Qvalue

C:\msdchem\1\data\2024\AUG2024\AUG01\ Data Path Data File

6:32 pm


2 Aug 2024 01AUG39.D

BLK-819 BEP Acq On Operator

Sample Misc

Sample Multiplier: 15 ALS Vial

C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M Fri Aug 02 14:17:01 2024 Initial Calibration ro-15 Vapor analysis 02 19:00:59 2024 Quant Time: Aug Quant Method QLast Update Response via Title Quant

26 15_SIM.M Tue Oct 29'15:50:20 2024 ECD1

Page:

Date of Report: 11/11/2024

Yola Byram

Catalyst Environmental Solutions 315 Montana Ave Suite 311 Santa Monica, CA 90403

Walnut Bluff Work Plan Client Project:

Walnut Bluff Pace Project: 2416470 Pace Work Order:

B506047, B507754 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 10/11/2024. If you have any questions concerning this report, please feel free to contact me.

Revised Report: This report supersedes Report ID 1001547513

Sincerely,

Contact Person: Brianna Schutte

Client Services Rep

even Bennett

Steve Bennett

Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Samp!	ole Information	
	Chain of Custody and Cooler Receipt form	3
	Laboratory / Client Sample Cross Reference	7
Samp	ole Results	
	2416470-01 - WB01-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	10
	2416470-02 - WB02-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	12
	2416470-03 - WB03-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	14
	2416470-04 - WB04-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	16
	2416470-05 - WB05-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	18
	2416470-06 - WB06-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	20
	2416470-07 - WB07-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	22
	2416470-08 - WB08-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	24
	2416470-09 - WB09-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	26
	2416470-10 - WB10-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	28
	2416470-11 - WB11-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	30
	2416470-12 - WB12-24H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	32
	2416470-13 - WB13-24H	0.4
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	34
	2416470-14 - WB14-24H	00
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	36
	2416470-15 - WB17-24H	00
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	38
	2416470-16 - WB18-24H Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	40
	2416470-17 - WB19-24H	40
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	40
O!!4		42
Quant	ty Control Reports	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	4.4
	Method Blank Analysis	
NI - 4	Laboratory Control Sample	46
Notes		
	Notes and Definitions	48

Pac	Pace Analytical				7	Ţ				po	ody Form	m.
Report Toka Client: Cataly if Eact and Attn: No. Parket Address: 315 Market	Report Tod Client: Cataly of Engine Navida Soldeny Project #: Attn: No la Bay (N.M.) Street Address: 315 Mentava Ave. Si'k 31/ No 100/100			Analysis Requested	ed/I	Comm	2416470			Page	- <u> </u>	- 1
City, State, Zip: Sparta Man!	M, CA911413	Elizalethiuming	J-//	ih	Samplir	Sampling Equipment		Start Sampling Information	Stop Sampling Information		(si	CLP Level Yes No
rk Order #: 7	Email: y boy (AM) C.C. Solutions Work Order #: 24 - 6470.		wir	(VZ) roqu (A) tra	Pressure Hg)	Flow	, 	Canister	<u>O_</u>	Canister ab Receive	ezante (ba	UNITS (refect one)
Sample Sample ID	le Field ID / Point Of Collection	Date Time Sampled Sampled					# Time		Time		и —	ppbv Cpgm3
	MB01-24H	8m1 he 101 101	9-	A	30 06 26	37 (00 TK	1233	30	1148	_		
7-	ľ	10 10 24 1238	y	*	8	813 20459	1236	8	1238	7		
2	" WB 03- 24H	10 10 24 1242	X	A		D794 13897	47 1238	-+	1242	7 '		
7	WBOY - 2MH	ME 01 01 01	y	<	30 37493	93 bouck	-		17.44	2)		
ر کا	MB05-24H	10 10 24 1246	. *	A	_	-	9 1246		37.76	ردر در		
9	WB06-244	10 10 24 1305	7	V	30 0747	17 WATE	-		1305	η ,		
- 7	WBUT- 2411	16 10 914 1308	У	A	30 0616	10001	\dashv		1308	4		
2	WB00 - 24 H	10 10 24 1311	У	A	30 35416	16 6030fc	-	30	13[]	7	+	
4,	WBOA-24H	01 21 12 20	<u>у</u>	А	-	Ť	JE 1317	_	27	7		
0	MR10 - 24 H	10 10 24 1344	. 9.	٩	30 01 61	18714	7 <u>1407</u>	36	1344	7,		
	H MS 11 - 24 H	5141 1410101	又	D		84 10012	2 1410	-+	1413	2)		
7) -	W812-24K	10 16 24 12 30		A		27754 6982	17 1111	-/	1230	7	-	,
:	WB 13-24 H	0381 130 01	. 9	ď	30 0681	1209 18	\dashv	30	1350	-		
7	NB 14 - 24 H	10 14 24 1355	٠, ٧	4	30 6484	84 60ZFE	<u> </u>	8	1355	7	;	
Billing	, Same as above	Res	Result Request	STD (10 Days)	∵ ∐ 5 Day**		ı ☐ 4 Day**	∏ 3 Day**		☐ 2 Day**] 1 Day**
Client:	17.	i \	1. Relinquished By	12	- Date	Time	1. Received	-	4.36.0	Date 1/2/12	10.0	Time. 1777
Street Address:		1100			Date	_	2-Receive	de de	, , ,		<u>.</u>	Lime
City:	State:	Zip:				1300	$\underline{}$	sahet Bloca	Z	٥	7.7	1300
Attn:	Fax:	3.	<u></u>] `	Date		3. Received By	ed By	7	Date Date		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
***	ند		なるである		701	3		S S	1	10-	1	}

LAB USE ONLY. Affin Workorder/Login Label nere	ructions	Analyses Requested Proj. Manager:	<u>S</u>	nO seti d		31 O	Sample Comment	2	4 4		5,	utilions / Possible Hazards:	And THT Corrected Topic (C). Corrected Tomp. (C). Example (C). Example (C).	1500 Couler by in-Person Couler	FedEX UPS Other
ראם מצב החבוי אווא איני	E	Field Information	Canister one / curfe	Pressure / Vacuum	Flow Total	Start End Pressure Duration Rate Volume Pressure /	Vacuum Vacuum Marini Sampled (in Hg) (in Hg) (minutes) or Limin m³ or L	7					STANDAND THE STAND	Delother Spirit	= 1
Air CHAIN-OF-CUSTODY Analytical Request Document	Controllegation Finally Bay 12 M Finally Bay 12 M EMMILY Bay 12 M CCE EMMIL:	Imelie to: Susay Incore jewie: jewie: jewies Oserwing Osers jewies oder # (# applicable): jewies oder # (# applicable): jewies oder # (# applicable): jewies od annewtor	, RCRA, etc.) as		Units for Upper mg/m² PPMV Reporting (ug/m²) PPBV mg/m² PPMV		x* Summa Flow Begin Collection End Collection Collection X* Canister ID ID Date Time Date Time	(5685 20197 1919/24 1447 10/10/24	27756 60296 109924 1458 13/1024 1445		-		Collected By Elizabeth Hwang Signature: Planter Hwang	Date/Time: Basewed by/Company 19 1949 1949 1949 1949 1949 1949 1949	10/11/24 1St Gared Com
Pace Location Requested (City/State):		COSTONER PROPERTY OF THE PROPE	Time Zone Collected: [JAK A PT JMT JCT JET Segulatory Program (CAA, RCRA, etc.) as Deliverables:	PG Level III		[] Other	Customer Sample 1D Matrix *	WB17-24H -15 A	M818-24H -16 A				Additional Instructions from Pace*:	÷	ein Gished by/Connany Kenature

Chain of Custody and Cooler Receipt Form for 2416470 Page 3 of 4

ACE ANALYTICLA		coc	LER R	ECEIP	T FOR	M		Pag	ge	Of 2		
Submission #: 24-1642	2()										EE LIQU	ID
THE PERSON NAMED IN	ODMAAT	ION						NTAINER	-	FR VE	S D NO	
SHIPPING INFI Fed Ex D UPS D GSO / Pace Lab Field Service	GLS 🗆	Han	d Delive	ry 🗆	Ice	Chest	None	e 🗆 Box	×	,.	w/s	
Pace Lab Field Service	ther 🗆 (Specify	r)		1 '	Other L	(Specify)					
						ments:						
Refrigerant: Ice □ Blue Ic	<u> </u>	lone Z	Oth	ier 🗆		ommen	to:					
Custody Seals Ice Chest ☐	Co	ntaine	No 🗆	Non			1	Description	/)t-b	cocs V	os 🗸 No 🗆	
All samples received? Yes 🗆 No 🗆	Allsa	mples o	ontainer	s intact	? Yes	No 🗆				COC: II	u lu lu	1.110
	Emissis	ditter -	- с	ontaine	r: Sum	<u>∼</u> The	rmometer I	D:			10/11/20	1110
COC Received	Limee	,	K	COM	°C	1 10	1 Tei	MP_ º	c l	Analyst Ir	nit MPL	
TYES INO	Tempe	rature:	(A)	UUIT		, (-	,	IMPERS				
							SAMPLE N		7	8	9	10
SAMPLE CONTAINERS		1	2	3		4	5	6				
QT PE UNPRES				-	-							
40z / 80z / 160z PE UNPRES			-	+-	-						11.0	
20z Cr*6			-	+-	-	-						<u></u>
OT INORGANIC CHEMICAL METALS			-	-	-							_
INORGANIC CHEMICAL METALS 40z / 80	z / 16oz	-	-	-		-						
PT CYANIDE			-	-	-							1-
PT NITROGEN FORMS		-	-		_							-
PT TOTAL SULFIDE			-	+-	_							-
20z. NITRATE / NITRITE				-	_							+-
PT TOTAL ORGANIC CARBON			+	+	_							+-
PT CHEMICAL OXYGEN DEMAND				_								+
PtA PHENOLICS			_	_							$H\Pi$	+-
40ml VOA VIAL TRAVEL BLANK			+							I Z	머님	+
40ml VOA VIAL										I I	45	+
QT EPA 1664B										12	8	+
PT ODOR		<u> </u>								1 0	1 3	+
RADIOLOGICAL										16	- C/D	+
BACTERIOLOGICAL										1 2	5	-
40 ml VOA VIAL- 504										+ +		+
QT EPA 508/608.3/8081A										-		+
QT EPA 515.1/8151A										-		+-
QT EPA 525.2		1								+	¥ 2	++-
OT EPA 525.2 TRAVEL BLANK								-		+	91	1
40ml EPA 547								-	-	+		-
40ml EPA 531.1								-	-		+	-
80Z EPA 548.1							-	-	-		_	+
QT EPA 549.2								-		-		_
QT EPA 8015M OT EPA 8270C								-	-			
OT EPA 8270C 80z / 160z / 320z AMBER							-	-	-	-		_
80z / 160z / 320z AMBER 80z / 160z / 320z JAR							+	-				
SOIL SLEEVE							-	+	+			
PCB VIAL							-	1				
PLASTIC BAG						<u> </u>		-	+			
TEDLAR BAG	- 11 -	_		-		-	+	-				
FERROUS IRON		_					-	-				
ENCORE						-						
SMART KIT						1		Λ	A	Δ	Δ	
	66	A	>	Δ	A	A	A	A	1	LA		
SUMMA CANISTER								15 11 7	112			ev 23 0
Comments:Sample Numbering Completed By	: 101)			Dat	te/Time:	TUIL	124 1	15 +	oc\WordPerfec	NULAB_DOCS\FOR	MSISAN
A = Actual / C = Corrected	· + +							17	Ta:MAD			

Chain of Custody and Cooler Receipt Form for 2416470 Page 4 of 4

Submission #: 71-164- SHIPPING INF Fed Ex D UPS GSO Pace Lab Field Service		\TION ∃ Han ∃ (Specify	d Deliv	ery 🗆	Ice C	hest	PING C No	ONTAIN one □ E	ER Sox Ø	Į,	REE LIQ YES D N W / S	UID, O Ø
Refrigerant: Ice □ Blue Ic					Comm	ents:						
Custody Seals Ice Chest	₩-C	ontaine	s 🗆	None	Co.	mmer	ıts:					
Intact? Yes. No. 🗈	Inta	ct? Yes 🗀	No □		<u>'</u>				_			
All samples received? Yes ☑ No □	All	samples o	ontaine	rs intact?	Yes,Z	No □					Yes ☑ No	
COC Received	Emis	sivity:	9	Container	: <u>Sum=</u>	4 The	rmomete	r ID:			ne <u>(6/1/</u>	4 110
FYES □ NO	Tem	perature:_	(A)_K	COM	°c_	1 (0	<u>) [1</u>	PMP	<u>°C</u>	Analyst	Init MP1	
		<u> </u>	-					NUMBERS				
SAMPLE CONTAINERS		t <u>1</u>	1 2	/ 3]4] 5	4 6	1 7	- 8	 9 _	10
QT PE UNPRES						\dashv				+	+	1
40z / 80z / 160z PE UNPRES			 	-				 				
20z Cr*6		 	+	+	_							4
OT INORGANIC CHEMICAL METALS INORGANIC CHEMICAL METALS 40z / 80	z / 160z		1							 		
PT CYANIDE								ļ	<u> </u>	-	 	
PT NITROGEN FORMS						ļ		 	 	-		+-
PT TOTAL SULFIDE		<u> </u>	ļ					-			+	1
20z. NITRATE / NITRITE		<u> </u>	-			\dashv		 	 			
PT TOTAL ORGANIC CARBON		 	+		\dashv			 				
PT_CHEMICAL OXYGEN DEMAND_		+	+	_								
PIA PHENOLICS		 	+	1								
40ml VOA VIAL TRAVEL BLANK 40ml VOA VIAL		1										
OT EPA 1664B								<u> </u>	-		-\ -	+-
PT ODOR		<u> </u>		_ _	_ _				+			+-
RADIOLOGICAL								-	 			
BACTERIOLOGICAL		-						 				
40 ml VOA VIAL- 504		-	+-									_ _
QT EPA 508/608.3/8081A		1						⊥				
QT EPA 515.1/8151A		1					<u> </u>	_				 _
QT EPA 525.2 QT EPA 525.2 TRAVEL BLANK							<u> </u>					
40ml EPA 547							 			_ _		-;
40ml EPA 531.1										_		
80z EPA 548.1				-			+ -			\neg		
QT EPA 549.2		 					1					
OT EPA 8015M		+-	-	-								
OT EPA 8270C												
80z/160z/320z AMBER 80z/160z/320z JAR							4,					-+
SOIL SLEEVE							1 -			- -		\dashv
PCB VIAL		}					+	_	\dashv		-+	_ _
PLASTIC BAG							 	+-				
TEDLAR BAG			- -	_			1					
FERROUS IRON			\dashv								_	
ENCORE		_	\dashv									-
SMART KIT		Ā	\neg	A I	4	Α	A	I A	<u>A</u>	L_		
SUMMA CANISTER				<u></u>								
Comments: Sample Numbering Completed By: A = Actual / C = Corrected	M	7]			Date/T	lme: _	10/11	124	137 18:W	Doc\WordPerfe	F CINLAB_DOCS\FOF	lev 23 05/20 MS\SAMREC

Reported: 11/11/2024 15:09 Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
2416470-01	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 11:48
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB01-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air
2416470-02	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 12:38
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB02-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air
2416470-03	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 12:42
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB03-24H	Lab Matrix:	Air
	Sampling Form:	Elizabeth Hwang	Sample Type:	Vapor or Air
	Cumpica By:		Cumple Type.	
2416470-04	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 12:44
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB04-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air
2416470-05	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 12:46
	Sampling Location:		Sample Depth:	
		WB05-24H	Lab Matrix:	Air
	Sampling Point: Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air
2416470-06	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 13:05
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB06-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air
	- Campioa By:	<u> </u>	Campio Type.	,
2416470-07	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 13:08
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB07-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air

Page 7 **364**

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
2416470-08	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 13:11
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB08-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air
2416470-09	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 12:20
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB09-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air
2416470-10	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 13:44
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB10-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air
	Sampled By.	Liizabati i iwang	Sample Type.	vapor or 7 til
2416470-11	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 14:13
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB11-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air
2416470-12	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 12:30
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB12-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air
2416470-13	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 13:50
	Sampling Location:		Sample Depth:	
	. •	WB13-24H	Lab Matrix:	Air
	Sampling Point: Sampled By:	Elizabeth Hwang	Lab Matrix: Sample Type:	Vapor or Air
	Sampled by.	Liizabetti riwang	Sample Type.	vapor or 7 til
2416470-14	COC Number:		Receive Date:	10/11/2024 17:00
	Project Number:		Sampling Date:	10/10/2024 13:55
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB14-24H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air

Reported: 11/11/2024 15:09 Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information											
2416470-15	COC Number:		Receive Date:	10/11/2024 17:00								
	Project Number:		Sampling Date:	10/10/2024 14:31								
	Sampling Location:		Sample Depth:									
	Sampling Point:	WB17-24H	Lab Matrix:	Air								
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air								
2416470-16	COC Number:		Receive Date:	10/11/2024 17:00								
	Project Number:		Sampling Date:	10/10/2024 14:45								
	Sampling Location:		Sample Depth:									
	Sampling Point:	WB18-24H	Lab Matrix:	Air								
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air								
2416470-17	COC Number:		Receive Date:	10/11/2024 17:00								
	Project Number:		Sampling Date:	10/10/2024 14:21								
	Sampling Location:		Sample Depth:									
	Sampling Point:	WB19-24H	Lab Matrix:	Air								
	Sampled By:	Elizabeth Hwang	Sample Type:	Vapor or Air								

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

101550740

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Reported: 11/11/2024 15:09

Project: Walnut Bluff Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Benzene	ace Sample ID:	2416470-01	Client Sampl	e Name:	WB01-24I	H, 10/10/20	024 11:48:00AM, I	Elizabeth Hw	ang	
Benzene			·	11. 24	BO!	MDI	NA - 41 1			
Benzyl chloride									Quals	<u>DCN</u> 1
Carbon tetrachloride 0.47 ug/m3 0.20 0.0663 EPA-TO-15-SIM ND Chlorobenzene ND ug/m3 0.10 0.0079 EPA-TO-15-SIM ND Chloroform 0.15 ug/m3 0.050 0.0088 EPA-TO-15-SIM ND 1,2-Dibromoethane ND ug/m3 0.20 0.014 EPA-TO-15-SIM ND 1,2-Dichlorobenzene ND ug/m3 0.20 0.011 EPA-TO-15-SIM ND 1,3-Dichlorobenzene ND ug/m3 0.20 0.018 EPA-TO-15-SIM ND 1,4-Dichlorobenzene ND ug/m3 0.20 0.016 EPA-TO-15-SIM ND 1,1-Dichlorobenzene ND ug/m3 0.050 0.0041 EPA-TO-15-SIM ND 1,1-Dichlorobenzene ND ug/m3 0.050 0.0041 EPA-TO-15-SIM ND 1,1-Dichlorobenzene ND ug/m3 0.050 0.0048 EPA-TO-15-SIM ND 1,1-Z-Dichlorobenzene ND ug/m3							EPA-TO-15-SIM			1
Chlorobenzene ND	<u> </u>									1
Chloroform										<u>.</u> 1
1,2-Dichloromethane										1
1,2-Dichlorobenzene ND ug/m3 0.20 0.011 EPA-TO-15-SIM ND 1,3-Dichlorobenzene ND ug/m3 0.20 0.013 EPA-TO-15-SIM ND 1,4-Dichlorobenzene ND ug/m3 0.20 0.016 EPA-TO-15-SIM ND Dichlorodiffluoromethane 2,3 ug/m3 0.050 0.0052 EPA-TO-15-SIM ND 1,1-Dichloroethane ND ug/m3 0.050 0.0041 EPA-TO-15-SIM ND 1,2-Dichloroethane 0.067 ug/m3 0.10 0.0046 EPA-TO-15-SIM ND 1,1-Dichloroethane ND ug/m3 0.050 0.0078 EPA-TO-15-SIM ND 1,1-Dichloroethene ND ug/m3 0.050 0.0044 EPA-TO-15-SIM ND trans-1,2-Dichloroethene ND ug/m3 0.050 0.0075 EPA-TO-15-SIM ND trans-1,2-Dichloroethene ND ug/m3 0.050 0.013 EPA-TO-15-SIM ND 1,1-Difluoroethane 0.43										<u>'</u> 1
1,3-Dichlorobenzene ND ug/m3 0.20 0.013 EPA-TO-15-SIM ND 1,4-Dichlorobenzene ND ug/m3 0.20 0.016 EPA-TO-15-SIM ND 1,4-Dichloroettrane ND ug/m3 0.050 0.0052 EPA-TO-15-SIM ND 1,1-Dichloroettrane ND ug/m3 0.050 0.0041 EPA-TO-15-SIM ND 1,1-Dichloroettrane ND ug/m3 0.050 0.0078 EPA-TO-15-SIM ND 1,1-Dichloroettrane ND ug/m3 0.050 0.0078 EPA-TO-15-SIM ND 1,1-Dichloroettrane ND ug/m3 0.050 0.0044 EPA-TO-15-SIM ND trans-1,2-Dichloroethene ND ug/m3 0.050 0.0075 EPA-TO-15-SIM ND trans-1,3-Dichloroethene ND ug/m3 0.050 0.013 EPA-TO-15-SIM ND 1,1-Diffuoroethane 0.43 ug/m3 0.050 0.017 EPA-TO-15-SIM ND 1,1 ug/m3 0.05	•									<u>'</u> 1
1.4-Dichlorobenzene	,									1
Dichlorodifluoromethane 2.3	•									1
1,1-Dichloroethane ND ug/m3 0.050 0.0041 EPA-TO-15-SIM ND 1,2-Dichloroethane 0.067 ug/m3 0.10 0.0046 EPA-TO-15-SIM ND J 1,1-Dichloroethane ND ug/m3 0.050 0.0078 EPA-TO-15-SIM ND J cis-1,2-Dichloroethane ND ug/m3 0.050 0.0044 EPA-TO-15-SIM ND trans-1,2-Dichloropropene ND ug/m3 0.050 0.0075 EPA-TO-15-SIM ND trans-1,3-Dichloropropene ND ug/m3 0.050 0.013 EPA-TO-15-SIM ND 1,1-Difluoroethane 0.43 ug/m3 0.050 0.0027 EPA-TO-15-SIM ND J Ethylbenzene 0.29 ug/m3 0.050 0.017 EPA-TO-15-SIM ND J Tetrachloroethene 0.21 ug/m3 0.20 0.020 EPA-TO-15-SIM ND Toluene 1.3 ug/m3 0.10 0.0062 EPA-TO-15-SIM ND	•	<u> </u>								1
1,2-Dichloroethane 0.067 ug/m3 0.10 0.0046 EPA-TO-15-SIM ND J 1,1-Dichloroethene ND ug/m3 0.050 0.0078 EPA-TO-15-SIM ND cis-1,2-Dichloroethene ND ug/m3 0.050 0.0044 EPA-TO-15-SIM ND trans-1,2-Dichloroethene ND ug/m3 0.050 0.0075 EPA-TO-15-SIM ND trans-1,3-Dichloropropene ND ug/m3 0.050 0.013 EPA-TO-15-SIM ND 1,1-Difluoroethane 0.43 ug/m3 5.0 0.0027 EPA-TO-15-SIM ND 1,1-Difluoroethane 0.29 ug/m3 0.050 0.017 EPA-TO-15-SIM ND ND ug/m3 0.20 0.020 EPA-TO-15-SIM ND Value ND ug/m3 0.10 0.011 EPA-TO-15-SIM ND Toluene 1.3 ug/m3 0.10 0.0062 EPA-TO-15-SIM ND 1,1,2-Trichloroethane ND ug/m3 0.10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>.</u> 1</td>										<u>.</u> 1
1,1-Dichloroethene ND ug/m3 0.050 0.0078 EPA-TO-15-SIM ND cis-1,2-Dichloroethene ND ug/m3 0.050 0.0044 EPA-TO-15-SIM ND trans-1,2-Dichloroethene ND ug/m3 0.050 0.0075 EPA-TO-15-SIM ND trans-1,3-Dichloropropene ND ug/m3 0.050 0.013 EPA-TO-15-SIM ND 1,1-Difluoroethane 0.43 ug/m3 5.0 0.0027 EPA-TO-15-SIM ND 1,1-Difluoroethane 0.29 ug/m3 0.050 0.017 EPA-TO-15-SIM ND ND ug/m3 0.20 0.020 EPA-TO-15-SIM ND ND ug/m3 0.10 0.011 EPA-TO-15-SIM ND Toluene 1.3 ug/m3 0.10 0.002 EPA-TO-15-SIM ND 1,1,1-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND 1,1,2-Trichloroethane ND ug/m3 0.10 0.0055 EPA-	•								J	1
cis-1,2-Dichloroethene ND ug/m3 0.050 0.0044 EPA-TO-15-SIM ND trans-1,2-Dichloroethene ND ug/m3 0.050 0.0075 EPA-TO-15-SIM ND trans-1,3-Dichloropropene ND ug/m3 0.050 0.013 EPA-TO-15-SIM ND 1,1-Difluoroethane 0.43 ug/m3 5.0 0.0027 EPA-TO-15-SIM ND Itylbenzene 0.29 ug/m3 0.050 0.017 EPA-TO-15-SIM ND Naphthalene 0.21 ug/m3 0.20 0.020 EPA-TO-15-SIM ND Tetrachloroethene ND ug/m3 0.10 0.011 EPA-TO-15-SIM ND Toluene 1,3 ug/m3 0.10 0.0062 EPA-TO-15-SIM ND 1,1,1-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND 1,1,2-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND Trichlorofluoromethane 1,2 ug/m3 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>EPA-TO-15-SIM</td> <td></td> <td></td> <td><u>·</u> 1</td>	•						EPA-TO-15-SIM			<u>·</u> 1
trans-1,2-Dichloroethene ND ug/m3 0.050 0.0075 EPA-TO-15-SIM ND trans-1,3-Dichloropropene ND ug/m3 0.050 0.013 EPA-TO-15-SIM ND 1,1-Difluoroethane 0.43 ug/m3 5.0 0.0027 EPA-TO-15-SIM ND J Ethylbenzene 0.29 ug/m3 0.050 0.017 EPA-TO-15-SIM ND Naphthalene 0.21 ug/m3 0.20 0.020 EPA-TO-15-SIM ND Tetrachloroethene ND ug/m3 0.10 0.011 EPA-TO-15-SIM ND Toluene 1.3 ug/m3 0.10 0.0062 EPA-TO-15-SIM ND 1,1,1-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND 1,1,2-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND Trichlorofluoromethane 1.2 ug/m3 0.050 0.0057 EPA-TO-15-SIM ND 1,1,2-Trichloro-1,2,2-trifluoroethane	is-1,2-Dichloroethene					0.0044	EPA-TO-15-SIM	ND		<u>'</u> 1
1,1-Diffuoroethane 0.43 ug/m3 5.0 0.0027 EPA-TO-15-SIM ND J Ethylbenzene 0.29 ug/m3 0.050 0.017 EPA-TO-15-SIM ND Naphthalene 0.21 ug/m3 0.20 0.020 EPA-TO-15-SIM ND Tetrachloroethene ND ug/m3 0.10 0.011 EPA-TO-15-SIM ND Toluene 1.3 ug/m3 0.10 0.0062 EPA-TO-15-SIM ND 1,1,1-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND 1,1,2-Trichloroethane ND ug/m3 0.10 0.0095 EPA-TO-15-SIM ND Trichlorofluoromethane 1.2 ug/m3 0.050 0.0057 EPA-TO-15-SIM ND 1,1,2-Trichloro-1,2,2-trifluoroethane 0.52 ug/m3 0.10 0.0078 EPA-TO-15-SIM ND Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND P-& m-Xylenes 0.94	ans-1,2-Dichloroethene		ND		0.050	0.0075	EPA-TO-15-SIM	ND		<u>·</u> 1
1,1-Diffuoroethane 0.43 ug/m3 5.0 0.0027 EPA-TO-15-SIM ND J Ethylbenzene 0.29 ug/m3 0.050 0.017 EPA-TO-15-SIM ND Naphthalene 0.21 ug/m3 0.20 0.020 EPA-TO-15-SIM ND Tetrachloroethene ND ug/m3 0.10 0.011 EPA-TO-15-SIM ND Toluene 1.3 ug/m3 0.10 0.0062 EPA-TO-15-SIM ND 1,1,1-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND 1,1,2-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND Trichloroethene ND ug/m3 0.10 0.0095 EPA-TO-15-SIM ND Trichlorofluoromethane 1.2 ug/m3 0.050 0.0057 EPA-TO-15-SIM ND Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND P-& m-Xylenes 0.94 ug/m3	ans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		 1
Naphthalene 0.21 ug/m3 0.20 0.020 EPA-TO-15-SIM ND Tetrachloroethene ND ug/m3 0.10 0.011 EPA-TO-15-SIM ND Toluene 1.3 ug/m3 0.10 0.0062 EPA-TO-15-SIM ND 1,1,1-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND 1,1,2-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND Trichloroethane ND ug/m3 0.10 0.0095 EPA-TO-15-SIM ND Trichlorofluoromethane 1.2 ug/m3 0.050 0.0057 EPA-TO-15-SIM ND 1,1,2-Trichloro-1,2,2-trifluoroethane 0.52 ug/m3 0.10 0.0078 EPA-TO-15-SIM ND Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND p-& m-Xylenes 0.94 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND o-Xylene 0.32 ug/m3	,1-Difluoroethane		0.43	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene ND ug/m3 0.10 0.011 EPA-TO-15-SIM ND Toluene 1.3 ug/m3 0.10 0.0062 EPA-TO-15-SIM ND 1,1,1-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND 1,1,2-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND Trichloroethane ND ug/m3 0.10 0.0095 EPA-TO-15-SIM ND Trichlorofluoromethane 1.2 ug/m3 0.050 0.0057 EPA-TO-15-SIM ND 1,1,2-Trichloro-1,2,2-trifluoroethane 0.52 ug/m3 0.10 0.0078 EPA-TO-15-SIM ND Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND p-& m-Xylenes 0.94 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND o-Xylene 0.32 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND	thylbenzene		0.29	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Toluene 1.3 ug/m3 0.10 0.0062 EPA-TO-15-SIM ND 1,1,1-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND 1,1,2-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND Trichloroethene ND ug/m3 0.10 0.0095 EPA-TO-15-SIM ND Trichlorofluoromethane 1.2 ug/m3 0.050 0.0057 EPA-TO-15-SIM ND 1,1,2-Trichloro-1,2,2-trifluoroethane 0.52 ug/m3 0.10 0.0078 EPA-TO-15-SIM ND Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND p- & m-Xylenes 0.94 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND o-Xylene 0.32 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND	aphthalene		0.21	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND 1,1,2-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND Trichloroethane ND ug/m3 0.10 0.0095 EPA-TO-15-SIM ND Trichloroffluoromethane 1.2 ug/m3 0.050 0.0057 EPA-TO-15-SIM ND 1,1,2-Trichloro-1,2,2-trifluoroethane 0.52 ug/m3 0.10 0.0078 EPA-TO-15-SIM ND Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND p- & m-Xylenes 0.94 ug/m3 0.050 0.0042 EPA-TO-15-SIM ND o-Xylene 0.32 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND	etrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane ND ug/m3 0.10 0.0055 EPA-TO-15-SIM ND Trichloroethene ND ug/m3 0.10 0.0095 EPA-TO-15-SIM ND Trichlorofluoromethane 1.2 ug/m3 0.050 0.0057 EPA-TO-15-SIM ND 1,1,2-Trichloro-1,2,2-trifluoroethane 0.52 ug/m3 0.10 0.0078 EPA-TO-15-SIM ND Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND p- & m-Xylenes 0.94 ug/m3 0.050 0.0082 EPA-TO-15-SIM ND o-Xylene 0.32 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND	oluene		1.3	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
Trichloroethene ND ug/m3 0.10 0.0095 EPA-TO-15-SIM ND Trichlorofluoromethane 1.2 ug/m3 0.050 0.0057 EPA-TO-15-SIM ND 1,1,2-Trichloro-1,2,2-trifluoroethane 0.52 ug/m3 0.10 0.0078 EPA-TO-15-SIM ND Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND p- & m-Xylenes 0.94 ug/m3 0.050 0.0082 EPA-TO-15-SIM ND o-Xylene 0.32 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND	,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane 1.2 ug/m3 0.050 0.0057 EPA-TO-15-SIM ND 1,1,2-Trichloro-1,2,2-trifluoroethane 0.52 ug/m3 0.10 0.0078 EPA-TO-15-SIM ND Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND p- & m-Xylenes 0.94 ug/m3 0.050 0.0082 EPA-TO-15-SIM ND o-Xylene 0.32 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND	,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluoroethane 0.52 ug/m3 0.10 0.0078 EPA-TO-15-SIM ND Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND p- & m-Xylenes 0.94 ug/m3 0.050 0.0082 EPA-TO-15-SIM ND o-Xylene 0.32 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND	richloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Vinyl chloride ND ug/m3 0.020 0.0046 EPA-TO-15-SIM ND p- & m-Xylenes 0.94 ug/m3 0.050 0.0082 EPA-TO-15-SIM ND o-Xylene 0.32 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND	richlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
p- & m-Xylenes 0.94 ug/m3 0.050 0.0082 EPA-TO-15-SIM ND o-Xylene 0.32 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND	,1,2-Trichloro-1,2,2-triflu	uoroethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
o-Xylene 0.32 ug/m3 0.050 0.0044 EPA-TO-15-SIM ND	inyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
	- & m-Xylenes		0.94	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
Total Yulanes 1.2 ug/m2 0.40 0.012 FPA-T0-15-SIM ND	-Xylene		0.32	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Aylenes 1.5 ug/iii 0.10 0.015 Elik 10 to time ND	otal Xylenes		1.3	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate) 96.9 % 50 - 150 (LCL - UCL) EPA-TO-15-SIM	-Bromofluorobenzene (S	Surrogate)	96.9	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate) 96.9 % 50 - 150 (LCL - UCL) EPA-TO-15-SIM	-Bromofluorobenzene (S	Surrogate)	96.9	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	2 416470-01	Client San	nple Name:					
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/24/24 19:32	BEP	MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Page 11 **368** Report ID: 1001550740

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	416470-02	Client Sample	e Name:	WB02-24	H, 10/10/20	024 12:38:00PM,	Elizabeth Hw	/ang	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		0.88	ug/m3	0.050	0.0032	EPA-TO-15-SIM	ND	Quuis	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.46	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.17	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		0.078	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	1
Dichlorodifluoromethane		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.070	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.44	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.36	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.43	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.9	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluor	oethane	0.50	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		1.0	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.38	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.4	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surr	ogate)	109	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surr	ogate)	109	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Suri	ogate)	81.3	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	2416470-02	Client San	nple Name: V	VB02-24H, 10	0/10/2024 12:38	:00PM, Eliza		
		-	Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/24/24 20:18	BEP	MS-A2	1	B199628	EPA TO-15
2	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 15:20	BEP	MS-A2	10	B199781	EPA TO-15

DCN = Data Continuation Number

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2	416470-03	Client Sampl	e Name:	WB03-24I	H, 10/10/20)24 12:42:00PM, I	Elizabeth Hw	rang	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		0.70	ug/m3	0.050	0.0032	EPA-TO-15-SIM	ND ND	Quuis	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.48	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.17	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethane		2.4	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.064	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
sis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
rans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
rans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.48	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.25	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.16	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.2	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluo	roethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
/inyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
o- & m-Xylenes		0.79	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.29	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.1	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Sui	rogate)	112	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sui	rogate)	112	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	2416470-03	Client Sam	ple Name:					
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/24/24 21:05	BEP	MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-04	Client Sample	e Name:	WB04-24I	H, 10/10/20	24 12:44:00PM,	Elizabeth Hw	/ang	
O-matition 1		·	11. "	DOI.	MDL	NA - 41 1	МВ	Lab	
Constituent Benzene		Result 0.85	Units ug/m3	PQL 0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.48	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		. 1
Chloroform		0.15	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		<u>'</u> 1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		 1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		<u>·</u> 1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		<u>·</u> 1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		<u>·</u> 1
Dichlorodifluoromethan	e	2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.065	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropen	e	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.45	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.28	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.18	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.4	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifl	uoroethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		0.93	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.33	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.3	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	105	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	105	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2416470-04	Client Sam	lient Sample Name: WB04-24H, 10/10/2024 12:44:00PM, Elizabeth Hwang						
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID		
1	EPA-TO-15-SIM	10/24/24 10:49	10/24/24 21:51	BEP	MS-A2	1	B199628	EPA TO-15	

DCN = Data Continuation Number

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2	416470-05	Client Sampl	e Name:	WB05-24	H, 10/10/20	024 12:46:00PM,	Elizabeth Hw	/ang	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		0.91	ug/m3	0.050	0.0032	EPA-TO-15-SIM	ND	Quais	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.49	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.15	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethane		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.067	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.45	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.39	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.19	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		2.0	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluo	roethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		1.4	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.50	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.9	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Sur	rogate)	111	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	111	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	83.8	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			2

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2416470-05	Client Sam	nple Name:					
		-	Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/24/24 22:39	BEP	MS-A2	1	B199628	EPA TO-15
2	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 16:03	BEP	MS-A2	10	B199781	EPA TO-15

DCN = Data Continuation Number

Page 19 **376** Report ID: 1001550740

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-06	Client Sample	e Name:	WB06-24I	H, 10/10/20	024 1:05:00PM, E	Elizabeth Hw	ang	
Competitue			1124-	PQL	MDL	Madha	MB	Lab	D 011
Constituent Benzene		Result 0.68	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		 1
Carbon tetrachloride		0.48	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.16	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethan	е	2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.065	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropen	е	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.42	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.25	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.14	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.2	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifl	uoroethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		0.82	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.28	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.1	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (S	Surrogate)	102	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	102	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09

Project: Walnut Bluff Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2416470-06	Client Sam	ple Name:					
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/24/24 23:25	BEP	MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Page 21 **378** Report ID: 1001550740

Reported: 11/11/2024 15:09

Project: Walnut Bluff Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-07	Client Sample	e Name:	WB07-24	H, 10/10/20	024 1:08:00PM, E	Elizabeth Hw	ang	
Comptitueest			11:-24:	PQL	MDL	Madlead	MB	Lab	D O U
Constituent Benzene		Result 0.71	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		<u>.</u> 1
Carbon tetrachloride		0.47	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.16	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethar	ie	2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.064	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene	•	ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloroproper	ne	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.45	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.25	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.14	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.2	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane	1	1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trif	luoroethane	0.51	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		0.75	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.27	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.0	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	101	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	101	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D : 2416470-07	Client San						
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 00:13	BEP	MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-08	Client Sample	e Name:	WB08-24I	H, 10/10/20	024 1:11:00PM, E	lizabeth Hwa	ang	
On matthew 1		. D. "	11. "	PQL	MDL	NA - 41 1	МВ	Lab	P 2 1.
Constituent Benzene		Result 0.69	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		<u>.</u> 1
Carbon tetrachloride		0.48	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.14	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethan	е	2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.065	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropen	е	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.43	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.26	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.15	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.2	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-triff	uoroethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		0.80	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.29	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.1	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	103	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	103	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID) : 2416470-08	Client San	nple Name:					
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 01:00		MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-09	Client Sample	e Name:	WB09-24I	H, 10/10/20	024 12:20:00PM,	Elizabeth Hw	ang	
On a titue		. D. "	11. 24	PQL	MDL	NA - 41 1	MB	Lab	P 2 1 1
Constituent Benzene		Result 0.86	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	<u>DCN</u> 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		 1
Carbon tetrachloride		0.49	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		<u>·</u> 1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		<u>·</u> 1
Chloroform		0.32	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		<u>.</u> 1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethar	ie	2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.067	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene	:	ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloroproper	ne	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.42	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.38	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.17	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.8	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trif	luoroethane	0.53	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		1.4	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.49	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes	<u> </u>	1.9	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	101	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	101	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	2416470-09	Client Sam	lient Sample Name: WB09-24H, 10/10/2024 12:20:00PM, Elizabeth Hwang						
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID		
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 01:45	BEP	MS-A2	1	B199628	EPA TO-15	

DCN = Data Continuation Number

Page 27 **384** Report ID: 1001550740

Reported: 11/11/2024 15:09

Project: Walnut Bluff Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-10	Client Sampl	e Name:	WB10-24I	H, 10/10/20	024 1:44:00PM, E	Elizabeth Hwa	ang	
0 " 1				PQL	MDL		MB	Lab	
Constituent Benzene		Result 1.1	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		<u>.</u> 1
Carbon tetrachloride		0.48	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.15	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethan	e	2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.072	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropen	e	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.43	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.47	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.28	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.7	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trif	uoroethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		1.4	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.41	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.8	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	109	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	109	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09 Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2416470-10	Client Sam	Client Sample Name:		0/10/2024 1:44	:00PM, Elizal	beth Hwang	
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 02:32	BEP	MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-11	Client Sample	e Name:	WB11-24	H, 10/10/20	24 2:13:00PM, E	lizabeth Hwa	ang	
O-matition 1		D. "	11. "	PQL	MDL	NA - 41 1	МВ	Lab	P. 211
Constituent Benzene		Result 0.69	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		. 1
Carbon tetrachloride		0.49	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		<u>·</u> 1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		 1
Chloroform		0.14	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		<u>·</u> 1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethan	e	2.4	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.065	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropen	e	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.44	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.27	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.12	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.2	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifl	uoroethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		0.85	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.29	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.1	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	96.4	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	96.4	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2416470-11	Client San	Client Sample Name:		0/10/2024 2:13	:00PM, Elizal	beth Hwang	
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 03:21		MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Reported: 11/11/2024 15:09

Project: Walnut Bluff Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-12	Client Sampl	e Name:	WB12-24I	H, 10/10/20	024 12:30:00PM,	Elizabeth Hw	/ang	
0 " 1			11. %	PQL	MDL		MB	Lab	
Constituent Benzene		Result 0.73	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		 1
Carbon tetrachloride		0.49	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.15	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethan	e	2.2	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.065	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropen	e	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.44	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.27	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.17	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.3	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trif	uoroethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		0.89	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.32	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.2	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	99.7	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	99.7	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Page 32 **389** Report ID: 1001550740

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2416470-12	Client Sam	Client Sample Name:		0/10/2024 12:30):00PM, Eliza	abeth Hwang	
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 04:09	BEP	MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Report ID: 1001550740

Page 33 **390**

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-13	Client Sampl	e Name:	WB13-24I	H, 10/10/20	024 1:50:00PM, E	Elizabeth Hw	ang	
Comptitue		Do14	1124-	PQL	MDL	Mathad	MB	Lab	D O U
Constituent Benzene		Result 0.72	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		<u>.</u> 1
Carbon tetrachloride		0.49	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.17	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethar	10	2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.067	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene	•	ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloroproper	ne	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.44	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.26	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.15	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.2	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane	•	1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trif	luoroethane	0.53	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		0.79	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.29	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.1	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	98.0	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	98.0	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2416470-13	Client Sam	Client Sample Name:		0/10/2024 1:50	:00PM, Elizal	beth Hwang	
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 04:57	BEP	MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Page 35 **392** Report ID: 1001550740

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-14	Client Sampl	e Name:	WB14-24I	H, 10/10/20	24 1:55:00PM, E	Elizabeth Hw	ang	
O-matite and		December	1114	PQL	MDL	Madle ad	МВ	Lab	DOM
Constituent Benzene		Result 0.73	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		<u>.</u> 1
Carbon tetrachloride		0.49	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		<u>·</u> 1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.15	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethan	e	2.2	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.066	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropen	e	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.43	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.24	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.13	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.3	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifl	uoroethane	0.53	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		0.77	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.27	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.0	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	99.7	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	99.7	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2416470-14	Client San	Client Sample Name:		0/10/2024 1:55	:00PM, Eliza	beth Hwang	
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 05:45	BEP	MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Report ID: 1001550740

Page 37 **394**

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2	416470-15	Client Sampl	e Name:	WB17-24	H, 10/10/20)24 2:31:00PM, E	Elizabeth Hw	ang	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		0.92	ug/m3	0.050	0.0032	EPA-TO-15-SIM	ND	પ્રવાગ	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.15	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethane		2.2	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.068	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.47	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.34	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.22	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		2.2	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluo	roethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		1.1	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.40	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.5	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Sur	rogate)	105	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	105	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	83.5	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			2

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID) : 2416470-15	Client San	nple Name: V	VB17-24H, 1	0/10/2024 2:31	:00PM, Eliza	beth Hwang	
		-	Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 06:33	BEP	MS-A2	1	B199628	EPA TO-15
2	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 16:43	BEP	MS-A2	10	B199781	EPA TO-15

DCN = Data Continuation Number

Page 39 **396** Report ID: 1001550740

Report ID: 1001550740

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24164	470-16 Client Sample	e Name:	WB18-24F	H, 10/10/20	024 2:45:00PM, E	Elizabeth Hw	ang	
Constituent	Pagult	Unito	PQL	MDL	Mathad	MB	Lab	DON
Benzene	Result 0.94	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	<u>DCN</u> 1
Benzyl chloride	ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride	0.49	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene	ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform	0.14	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane	ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene	ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene	ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene	ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethane	2.2	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane	ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane	0.069	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene	ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene	ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
rans-1,2-Dichloroethene	ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane	0.48	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene	0.51	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene	0.21	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
Tetrachloroethene	ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene	2.1	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane	ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane	ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene	ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane	1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluoroeth	ane 0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride	ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
o- & m-Xylenes	1.9	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene	0.64	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes	2.6	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogat	te) 100	%	50 - 150 (LCI	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogat	te) 100	%	50 - 150 (LCI	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogat	te) 77.7	%	50 - 150 (LCI	L - UCL)	EPA-TO-15-SIM			2

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	2416470-16	Client San	nple Name: V	VB18-24H, 1	0/10/2024 2:45	00PM, Elizal	beth Hwang	
		-	Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 07:22	BEP	MS-A2	1	B199628	EPA TO-15
2	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 17:26	BEP	MS-A2	10	B199781	EPA TO-15

DCN = Data Continuation Number

Report ID: 1001550740 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 41

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416470-17	Client Sampl	e Name:	WB19-24I	H, 10/10/20	24 2:21:00PM, E	Elizabeth Hwa	ang	
Competitue			110-24-	PQL	MDL	Madlead	MB	Lab	D O U
Constituent Benzene		Result 1.1	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		<u>.</u> 1
Carbon tetrachloride		0.49	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		<u>·</u> 1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.14	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		ND	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND		1
Dichlorodifluoromethan	е	2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.076	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene	,	ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloroproper	ie	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.45	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.33	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.16	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		1.5	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trif	uoroethane	0.51	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		1.1	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.36	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		1.4	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	102	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	102	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Report ID: 1001550740

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2416470-17	Client San	nple Name:	WB19-24H, 1	0/10/2024 2:21	:00PM, Eliza	beth Hwang	
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15-SIM	10/24/24 10:49	10/25/24 08:10	BEP	MS-A2	1	B199628	EPA TO-15

DCN = Data Continuation Number

Report ID: 1001550740

Page 43 **400**

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	Run #
QC Batch ID: B199628							
Benzene	B199628-BLK1	ND	ug/m3	0.050	0.0032		1
Benzyl chloride	B199628-BLK1	ND	ug/m3	0.50	0.0052		1
Carbon tetrachloride	B199628-BLK1	ND	ug/m3	0.20	0.0063		1
Chlorobenzene	B199628-BLK1	ND	ug/m3	0.10	0.0079		1
Chloroform	B199628-BLK1	ND	ug/m3	0.050	0.0058		1
1,2-Dibromoethane	B199628-BLK1	ND	ug/m3	0.20	0.014		1
1,2-Dichlorobenzene	B199628-BLK1	ND	ug/m3	0.20	0.011		1
1,3-Dichlorobenzene	B199628-BLK1	ND	ug/m3	0.20	0.013		1
1,4-Dichlorobenzene	B199628-BLK1	ND	ug/m3	0.20	0.016		1
	B199628-BLK1	ND	ug/m3	0.050	0.0052		1
1,1-Dichloroethane	B199628-BLK1	ND	ug/m3	0.050	0.0041		1
1,2-Dichloroethane	B199628-BLK1	ND	ug/m3	0.10	0.0046		1
1,1-Dichloroethene	B199628-BLK1	ND	ug/m3	0.050	0.0078		1
cis-1,2-Dichloroethene	B199628-BLK1	ND	ug/m3	0.050	0.0044		1
trans-1,2-Dichloroethene	B199628-BLK1	ND	ug/m3	0.050	0.0075		1
trans-1,3-Dichloropropene	B199628-BLK1	ND	ug/m3	0.050	0.013		1
1,1-Difluoroethane	B199628-BLK1	ND	ug/m3	5.0	0.0027		1
- Ethylbenzene	B199628-BLK1	ND	ug/m3	0.050	0.017		1
- Naphthalene	B199628-BLK1	ND	ug/m3	0.20	0.020		1
Tetrachloroethene	B199628-BLK1	ND	ug/m3	0.10	0.011		1
Toluene	B199628-BLK1	ND	ug/m3	0.10	0.0062		1
1,1,1-Trichloroethane	B199628-BLK1	ND	ug/m3	0.10	0.0055		1
1,1,2-Trichloroethane	B199628-BLK1	ND	ug/m3	0.10	0.0055		1
Trichloroethene	B199628-BLK1	ND	ug/m3	0.10	0.0095		1
Trichlorofluoromethane	B199628-BLK1	ND	ug/m3	0.050	0.0057		1
1,1,2-Trichloro-1,2,2-trifluoroethane	B199628-BLK1	ND	ug/m3	0.10	0.0078		1
Vinyl chloride	B199628-BLK1	ND	ug/m3	0.020	0.0046		1
p- & m-Xylenes	B199628-BLK1	ND	ug/m3	0.050	0.0082		1
o-Xylene	B199628-BLK1	ND	ug/m3	0.050	0.0044		1
Total Xylenes	B199628-BLK1	ND	ug/m3	0.10	0.013		1
4-Bromofluorobenzene (Surrogate)	B199628-BLK1	86.5	%	50 - 15	0 (LCL - UCL)		1
QC Batch ID: B199781							
Toluene	B199781-BLK1	ND	ug/m3	0.10	0.0062		2

Report ID: 1001550740 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	Run #
QC Batch ID: B199781							
4-Bromofluorobenzene (Surrogate)	B199781-BLK1	83.5	%	50 - 150	(LCL - UCL)		2

					Run				
Run#	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution	
1	B199628-BLK1	РВ	EPA-TO-15-SIM	10/24/24	10/24/24 18:46	BEP	MS-A2	1	
2	B199781-BLK1	PB	EPA-TO-15-SIM	10/25/24	10/25/24 14:37	BEP	MS-A2	1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. Report ID: 1001550740

Page 45 **402** 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Reported: 11/11/2024 15:09 Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

								Control I	imits		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	Run #
	QC Sample ID	туре	Nesuit	Level	Onits	Recovery	KFD	Recovery	KFD	Quais	IXUII #
QC Batch ID: B199628											
Benzene	B199628-BS1	LCS	0.33679	0.31948	ug/m3	105	0.0	70 - 130 70 - 130	O.E.		1 2
	B199628-BSD1	LCSD	0.33734	0.31948	ug/m3	106	0.2		25		
Benzyl chloride	B199628-BS1	LCS	0.51450	0.51772	ug/m3	99.4	0.0	70 - 130	05		1
	B199628-BSD1	LCSD	0.51448	0.51772	ug/m3	99.4	0.0	70 - 130	25		2
Carbon tetrachloride	B199628-BS1	LCS	0.66978	0.62913	ug/m3	106		70 - 130			1
	B199628-BSD1	LCSD	0.66754	0.62913	ug/m3	106	0.3	70 - 130	25		2
Chlorobenzene	B199628-BS1	LCS	0.49549	0.46036	ug/m3	108		70 - 130			1
	B199628-BSD1	LCSD	0.49226	0.46036	ug/m3	107	0.7	70 - 130	25		2
Chloroform	B199628-BS1	LCS	0.52390	0.48825	ug/m3	107		70 - 130			1
	B199628-BSD1	LCSD	0.51913	0.48825	ug/m3	106	0.9	70 - 130	25		2
1,2-Dibromoethane	B199628-BS1	LCS	0.81772	0.76835	ug/m3	106		70 - 130			1
	B199628-BSD1	LCSD	0.80755	0.76835	ug/m3	105	1.3	70 - 130	25		2
1,2-Dichlorobenzene	B199628-BS1	LCS	0.64607	0.60124	ug/m3	107		70 - 130			1
	B199628-BSD1	LCSD	0.63009	0.60124	ug/m3	105	2.5	70 - 130	25		2
1,3-Dichlorobenzene	B199628-BS1	LCS	0.64921	0.60124	ug/m3	108		70 - 130			1
,-	B199628-BSD1	LCSD	0.64595	0.60124	ug/m3	107	0.5	70 - 130	25		2
1,4-Dichlorobenzene	B199628-BS1	LCS	0.64543	0.60124	ug/m3	107		70 - 130			1
1, 1 2 10 110 10 20 1120 110	B199628-BSD1	LCSD	0.63705	0.60124	ug/m3	106	1.3	70 - 130	25		2
1,1-Dichloroethane	B199628-BS1	LCS	0.42885	0.40474	ug/m3	106		70 - 130			1
1,1 Diomorodalano	B199628-BSD1	LCSD	0.43366	0.40474	ug/m3	107	1.1	70 - 130	25		2
1,2-Dichloroethane	B199628-BS1	LCS	0.42902	0.40474	ug/m3	106		70 - 130			1
1,2-Didilioloethane	B199628-BSD1	LCSD	0.42600	0.40474	ug/m3	105	0.7	70 - 130	25		2
1 1 Diablaraathana								70 - 130			1
1,1-Dichloroethene	B199628-BS1 B199628-BSD1	LCS LCSD	0.41563 0.42633	0.39649 0.39649	ug/m3 ug/m3	105 108	2.5	70 - 130 70 - 130	25		2
· 40 B: 11 #							2.0		20		
cis-1,2-Dichloroethene	B199628-BS1	LCS	0.41070	0.39649	ug/m3	104	1.1	70 - 130	O.E.		1
	B199628-BSD1	LCSD	0.41668	0.39649	ug/m3	105	1.4	70 - 130	25		2
Tetrachloroethene	B199628-BS1	LCS	0.67497	0.67825	ug/m3	99.5		70 - 130	0.5		1
	B199628-BSD1	LCSD	0.67019	0.67825	ug/m3	98.8	0.7	70 - 130	25		2
Toluene	B199628-BS1	LCS	0.40096	0.37684	ug/m3	106		70 - 130			1
	B199628-BSD1	LCSD	0.39894	0.37684	ug/m3	106	0.5	70 - 130	25		2
1,1,1-Trichloroethane	B199628-BS1	LCS	0.57334	0.54562	ug/m3	105		70 - 130			1
	B199628-BSD1	LCSD	0.57571	0.54562	ug/m3	106	0.4	70 - 130	25		2
1,1,2-Trichloroethane	B199628-BS1	LCS	0.57532	0.54562	ug/m3	105		70 - 130			1
	B199628-BSD1	LCSD	0.57331	0.54562	ug/m3	105	0.3	70 - 130	25		2
Trichloroethene	B199628-BS1	LCS	0.56714	0.53737	ug/m3	106		70 - 130			1
	B199628-BSD1	LCSD	0.56981	0.53737	ug/m3	106	0.5	70 - 130	25		2

Report ID: 1001550740

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

								Control I	imits		
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	Run #
QC Batch ID: B199628											
Vinyl chloride	B199628-BS1	LCS	0.27725	0.25562	ug/m3	108		70 - 130			1
	B199628-BSD1	LCSD	0.27433	0.25562	ug/m3	107	1.1	70 - 130	25		2
p- & m-Xylenes	B199628-BS1	LCS	0.92092	0.86843	ug/m3	106		70 - 130			1
	B199628-BSD1	LCSD	0.91407	0.86843	ug/m3	105	0.7	70 - 130	25		2
o-Xylene	B199628-BS1	LCS	0.46891	0.43421	ug/m3	108		70 - 130			1
	B199628-BSD1	LCSD	0.46565	0.43421	ug/m3	107	0.7	70 - 130	25		2
Total Xylenes	B199628-BS1	LCS	1.3898	1.3026	ug/m3	107		70 - 130			1
	B199628-BSD1	LCSD	1.3797	1.3026	ug/m3	106	0.7	70 - 130	25		2
4-Bromofluorobenzene (Surrogate)	B199628-BS1	LCS	3.76	3.58	ug/m3	105		50 - 150			1
	B199628-BSD1	LCSD	3.69	3.58	ug/m3	103	1.7	50 - 150			2
QC Batch ID: B199781											
Toluene	B199781-BS1	LCS	0.41380	0.37684	ug/m3	110		70 - 130			3
	B199781-BSD1	LCSD	0.40998	0.37684	ug/m3	109	0.9	70 - 130	25		4
4-Bromofluorobenzene (Surrogate)	B199781-BS1	LCS	3.47	3.58	ug/m3	96.9		50 - 150			3
	B199781-BSD1	LCSD	3.47	3.58	ug/m3	96.9	0.0	50 - 150			4

					Run			
Run#	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution
1	B199628-BS1	LCS	EPA-TO-15-SIM	10/24/24	10/24/24 17:18	BEP	MS-A2	1
2	B199628-BSD1	LCSD	EPA-TO-15-SIM	10/24/24	10/24/24 18:00	BEP	MS-A2	1
3	B199781-BS1	LCS	EPA-TO-15-SIM	10/25/24	10/25/24 13:03	BEP	MS-A2	1
4	B199781-BSD1	LCSD	EPA-TO-15-SIM	10/25/24	10/25/24 13:48	BEP	MS-A2	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001550740 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Reported: 11/11/2024 15:09 Project: Walnut Bluff

Project Number: Walnut Bluff Work Plan

Project Manager: Yola Byram

Notes And Definitions

Estimated Value (CLP Flag)

MDL Method Detection Limit ND Analyte Not Detected PQL Practical Quantitation Limit

Page 48 **405** Report ID: 1001550740

Appendix G

Laboratory Analytical Reports – 1 Hour Samples

Quantitation Report No Name Entered Data Path : C:\msdchem\1\data\2024\JUL2024\\JUL02\ Data File: 02JUL38.D : 4 Jul 2024 Acq On : BEP Operator

Sample : BLK-787

Sample Multiplier: 1 ALS Vial : 13

Quant Time: Jul 17 17:55:50 2024

Quant Method: C:\msdchem\1\methods\2024\202406\26-2146\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update: Thu Jun 27 12:10:39 2024

Response via: Initial Calibration

Compound	R.T.	QÎon	Response	Conc Units	Dev(Min)
Internal Standards					
1) Bromochloromethane	7.658	: 49	15583	500.00 ppty	v 0.00

500.00 pptv 20) 1,4-Difluorobenzene 114 28672 500.00 pptv 23863 28) Chlorobenzene-d5 11.186 117

System Monitoring Compounds

Target Compounds

11062 95 ~389.29 pptv -34) 4-Bromofluorobenzene (... 12.025

500.000 Range 50 - 150 Recovery Spiked Amount

(#) = qualifier out of range (m) = manual integration (4) = signals summed

manager of the second of the s

C:\msdchem\1\data\2024\JUL2024\JUL02\

6:37 am 4 Jul 2024 02JUL38.D Data File

Operator Acq On Sample

BLK-787

Misc

Sample Multiplier: 13 ALS Vial Quant Time: Jul 17 17:55:50 2024
Quant Method : C:\msdchem\1\methods\2024\202406\26-2146\TO15
Quant Title : TO-15 Vapor analysis: Abb Thu Jun 27, 12:10:39 2024 : Initial Calibration Response via Olast Update

280000 00000 00000 80000 81, an arther monotroomonal		
St. enerthermorphisms and the state of the s		
		no esta de la companya de la company
The state of the s	A Control of the Cont	A control of the cont
The second secon		
	3. p	The state of the s

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP20\

Data File: 19SEP20.D

4:55 am : 21 Sep 2024 Acq On

: BEP Operator

Sample Misc

: BLK-796

Sample Multiplier: 1 ALS Vial : 10

Quant Time: Sep 23 10:34:21 2024

Quant Method : C:\msdchem\1\methods\2024\202409\18-1821\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Thu Sep 19 11:48:20 2024 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
1) Bromochlorometháne	7.629	49	22920	500.00		0.00
20) 1,4-Difluorobenzene	8.813	114	41699	500.00	pptv	0.00
29) Chlorobenzene-d5	11.152	117	37081	500.00	pptv	0.00
	•	1	,	t		
System Monitoring Compounds						
36) 4-Bromofluorobenzene (.	11.991	95	17832	431.16		0.00
Spiked Amount 500.000	Range 50	- 150	Recove	ery =	86.23%	
Ī,					i	_ ,
Target Compounds	e.		74	24	Qv.	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

放水 , ,

, 養活

1.44.6

C:\msdchem\1\data\2024\SEP2024\SEP20\
19SEP20.D Data Path

Data File

4:55 am 21 Sep 2024 BEP

BLK-796 Acq On Operator Sample Misc

Sample Multiplier: 1 10 ALS Vial Quant Time: Sep 23 10:34:21 2024
Quant, Method : C:\msdchem\1\methods\2024\202409\18-1821\T015_SIM.M

Quant Title :: TO-15 Vapor analysis QLast Update : Thu Sep 19 11:48:20 2024 Response via : Initial Calibration

					!		
20000		: :		**		,	
45000	, -	-	J	SI, an a construction of the construction of t	-	<i>(</i> •	
40000		ı	1	٠			
35000	' ^k i		&I,ənsrlfəmorolr	Serve.	18) ənəznədorouflor	¢	
25000	, .	\ \ -	rhoomon8 -		no18- 1 > -	\ b.	
20000		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 ·		, , , , ,		
15000		A STATE OF THE STA		The state of the s		The state of the s	
10000			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 00 00 00 00 00 00 00 00 00 00 00 00 00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
2000	Type Calling Street of Calling	The state of the s	The state of the s	A Section of the sect			I
r	,						

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP20\

Data File : 19SEP22.D

: 21 Sep 2024 6:28 am Acq On

Operator : BEP

: BLK-803 Sample

Misc

Sample Multiplier: 1 ALS Vial : 12

Quant Time: Sep 23 10:35:05 2024

Quant Method: C:\msdchem\1\methods\2024\202409\18-1821\TO15_SIM.M Quant Title: TO-15 Vapor analysis QLast Update: Thu Sep 19 11:48:20 2024

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units De	v(Min)
Internal Standards					- <u>-</u>
1) Bromochloromethane	7.629	49	22821	/ 500.00 pptv '	0.00
20) 1.4-Difluorobenzene	8.813	114	42239	500.00 pptv	0.00
29) Chlorobenzene-d5	11.152	117	36958	500.00 pptv	0.00
and the last growthern and				,	* **
System Monitoring Compounds 36) 4-Bromofluorobenzene (95	18727	454.30 pptv	0.00
Spiked Amount 500.000 I	Range 50	- 150	Recove	ery = 90.86	૪
Target Compounds		,		Q	value
6) Acetone	5.480	43	15762	132.2757 pptv	. 94
				_	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

8-(878) eneznedorouflomora-TIC: 19SEP22.D\data.ms C:\msdchem\1\methods\2024\202409\18-1821\T015 SIM.M 21, en ex nedorouffi G-1, f C:\msdchem\1\data\2024\SEP2024\SEP20\ Sromochloromethane,15 Thu Sep 19 11:48:20 2024 ro-15 Vapor analysis 🕆 Sample Multiplier: Calibration am 23 10:35:05 2024 6:28 21 Sep 2024 19SEP22.D BLK-803 12 Response via QLast Update Method Title Data Path Data File Acq On Operator ALS Vial 10000 5000 15000 Sample 45000 40000 35000 30000 25000 20000 Abundance 50000 Quant Quant Quant Misc

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\AUG2024\AUG30\

Data File : 30AUG08.D

Acq On : 31 Aug 2024 1:04 am

Operator : BEP

2416404-04 Sample : BLK-23803

: *

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Sep 03 16:22:24 2024

Quant Method: C:\msdchem\1\methods\2024\202408\23-1041\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update: Fri Aug 23 14:02:10 2024 Response via: Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 8.495 10.883		23162 51666 30647	500.00 pptv 500.00 pptv 500.00 pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000 Ra	11.708 ange 50			435.16 pptv ery = 87.03%	0.00
Target Compounds 6) Acetone	5.035	58 	20889	Qv 1363.9623 pptv	alue 73

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

```
Data Path: C:\msdchem\l\data\2024\AUG2024\AUG30\
Data File: 30AUG08.D
Acq On: 31 Aug 2024 1:04 am
Operator: BEP
Sample: BLK-23803
Misc: *
ALS Vial: 6 Sample Multiplier: 1
```

Quant Time: Sep 03 16:22:24 2024
Quant Method : C:\msdchem\1\methods\2024\202408\23-1041\T015_SIM.M QLast Update : Fri Aug 23 14:02:10 2024 Response via : Initial Calibration : TO-15 Vapor analysis Quant Title

55000				
, 50000		SI, an a znac	S1'9P-	
45000	enotecA-	d orou∏iG-Þ,∤	euezueqouolu	
40000			ıo —	S;(83
35000	SI.enn			peuseue (B
30000	unorotho			onofluoro
25000	Bromore			I- ⊅ ——
20000				
15000-				
10000				
2000				

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP09\

Data File : 09SEP24.D

Acq On : 10 Sep 2024 5:35 pm

Operator : BEP

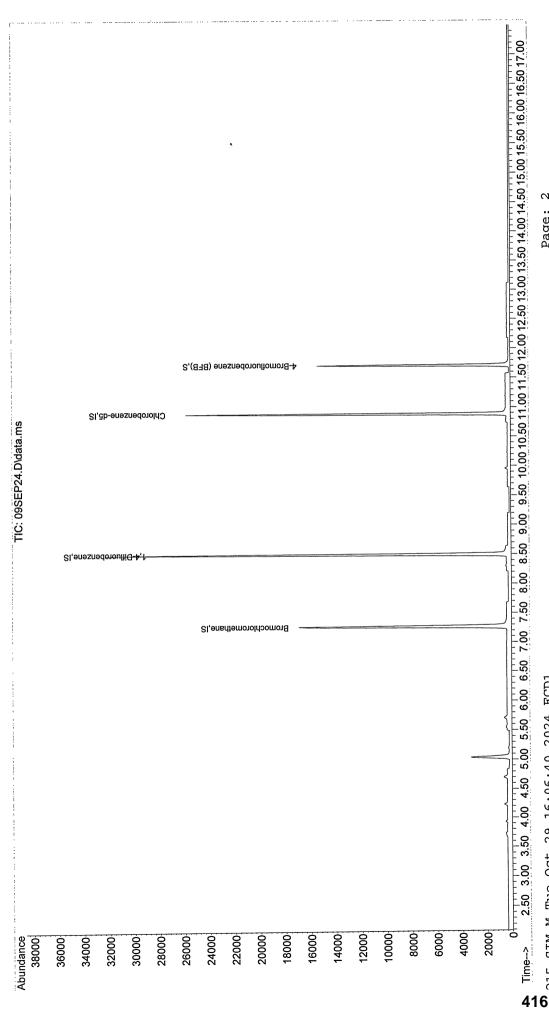
Sample : blk-37503 24/6404 - 05

Misc : *

Sample Multiplier: 1 ALS Vial : 5

Quant Time: Sep 11 11:28:42 2024
Quant Method : C:\msdchem\1\methods\2024\202409\03-2116\TO15_SIM.M
Quant Title : TO-15 Vapor analysis
QLast Update : Wed Sep 04 09:00:16 2024
Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 8.495 10.883	49 114 117	16267 34344 20377	500.00 500.00 500.00	pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000 F	11.708 Lange 50			436.96 ery =	pptv 87.39%	0.00
Target Compounds					Qva	alue


(#) = qualifier out of range (m) = manual integration (+) = signals summed

C:\msdchem\1\data\2024\SEP2024\SEP09\ шd 5:35 10 Sep 2024 09SEP24.D blk-37503 BEP Data Path Data File Operator Acg On Sample Misc Sep 11 11:28:42 2024
1 : C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M
 : TO-15 Vapor analysis Quant Method : QLast Update Time: Title Quant Quant

Sample Multiplier: 1

ALS Vial

Wed Sep 04 09:00:16 2024 Initial Calibration Response via

Quantitation Report (QT Reviewed) No Name Entered

Data Path : C:\msdchem\1\data\2024\AUG2024\AUG21\

Data File : 21AUG12.D

Acq On : 22 Aug 2024 2:26 am

2416404-06 Operator : BEP : BLK-43531 Sample

Misc : *

Sample Multiplier: 1 ALS Vial : 10

Quant Time: Aug 30 14:37:53 2024

Quant Method : C:\msdchem\1\methods\2024\202408\23-1041\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 23 14:02:10 2024 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 8.495 10.880	49 114 117	23025 53678 31278	500.00 pptv 500.00 pptv 500.00 pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000 I		95 - 150	17552 Recove	468.35 pptv ry = 93.67%	0.00
Target Compounds 6) Acetone	5.035	58	4095	Qv. 253.7771 pptv	alue 67

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

C:\msdchem\1\data\2024\AUG2024\AUG21\

2:26 am 22 Aug 2024 21AUG12.D Data Path Data File

BEP Operator Acq On

BLK-43531 Sample

Sample Multiplier: 1 10 ALS Vial Misc

Quant Method : C:\msdchem\1\methods\2024\202408\23-1041\T015 SIM.M : Fri Aug 23 14:02:10 2024 : Initial Calibration TO-15 Vapor analysis Time: Aug 30 14:37:53 2024 QLast Update Response via Title Quant Quant

250 300 350 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.50 10.00 10.50 11.50 12.50 12.50 13.50 14.00 14.50 15.50 16.00 16.50 17.00 8,(878) enescheorouflomora-4 Chlorobenzene-d5,1S TIC: 21AUG12.D\data.ms SI, en ex ned on outifi G-1. Bromochloromethane,1S Acetone 10000 5000 20000 15000 Abundange, 35000 30000 25000 45000 40000 55000-50000

Time-->

No Name Entered Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\AUG2024\AUG26\

Data File: 26AUG16.D

Acq On : 26 Aug 2024 10:28 pm

Operator : BEP

2416404-08 Sample : BLK-49958

Misc : *

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Aug 27 15:08:24 2024

Quant Method: C:\msdchem\1\methods\2024\202408\23-1041\T015 SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 23 14:02:10 2024

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 8.495 10.881	49 114 117	23698 55023 32653	500.00 500.00 500.00	pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000	. 11.708 Range 50	95 - 150		461.51 ry =	pptv 92.30%	0.00
Target Compounds					Qv	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

C:\msdchem\1\data\2024\AUG2024\AUG26\ 26AUG16.D

10:28 pm

26 Aug 2024

Data Path Data File BEP _ BLK-49958

Operator Sample

Acq On

Misc ALS Vial : C:\msdchem\1\methods\2024\202408\23-1041\T015 SIM.M

OLast Update : Fri Aug 23 14:02:10 2024 Response via : Initial Calibration

TO-15 Vapor analysis

Sample Multiplier:

Aug 27 15:08:24 2024

Time: A Method

Quant Quant Quant

Title

250 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.50 16.50 17.00 8-Bromofluorobenzene (BFB),S Chlorobenzene-d5,1S TIC: 26AUG16.D\data.ms 21, an a znadonouffi G-4 Bromochloromethane,1S 20000 15000 10000 5000 30000 25000 00009 55000 50000 45000 40000 35000 Abundance Time-->

No Name Entered Quantitation Report (QT Reviewed) Data Path : C:\msdchem\1\data\2024\AUG2024\AUG06\ Data File : 06AUG17.D Acq On : 7 Aug 2024 1:29 am Operator : BEP Sample : blk-800b 2416404 ALS Vial : 13 Sample Multiplier: 1 Quant Time: Aug 07 14:56:14 2024 Quant Method: C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 02 14:17:01 2024 Response via : Initial Calibration

R.T. QIon Response Conc Units Dev(Min) Compound Internal Standards 7.658 49 8.842 114 500.00 pptv 500.00 pptv 1) Bromochloromethane 16129 # 0.00 30177 29465 20) 1,4-Difluorobenzene 0.00 11.186 117 28) Chlorobenzene-d5 500.00 pptv 0.00 System Monitoring Compounds 34) 47Bromofluorobenzene (... 12.025 95 12599 385.58 pptv 0.00 Spiked Amount 500.000 Range 50 - 150 Recovery = 77.12% 1.1 Target Compounds 1

(#) = qualifier out of range (m) = manual integration (+) = signals summed

(QT Reviewed)

Quantitation Report

No Name Entered

C:\msdchem\1\data\2024\AUG2024\AUG06\

06AUG17.D

Data Path Data File

Time-->

Page: 2

2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00

No Name Entered Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP09\

Data File : 09SEP22.D

Acq On : 10 Sep 2024 4:20 pm

Operator : BEP

Sample : blk-679 24(6404 - 6

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Sep 11 11:28:01 2024

Quant Method: C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Wed Sep 04 09:00:16 2024

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 8.495 10.881	49 114 117	16094 34647 20750	500.00 500.00 500.00	pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000	. 11.708 Range 50	95 - 150	10547 Recove	443.48 ery =		0.00
Target Compounds					Qv 	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

(QT Reviewed)

Quantitation Report

No Name Entered

Page:

Quantitation Report No Name Entered (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\MAY2024\MAY15\

Data File: 15MAY18.D

: 16 May 2024 Acq On

: RMK Operator

2416404-11 Sample : BLK-35427

Misc : 13-756

ALS Vial Sample Multiplier: 1

Quant Time: May 17 12:55:33 2024 Quant Method: C:\msdchem\1\METHODS\2024\202404\25-1228\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update: Tue May 14 08:57:22 2024 Response via: Initial Calibration

Compound	R.T.	QIon	Response			* 12 £ 1 1
Internal Standards		,		17.5		
1) Bromochloromethane	7.677	49	13667	500.00	pptv 🗀	# 0.00
20) 1,4-Difluorobenzene	8.861	114	[*] 18955	500.00	pptv	0.00
28) Chlorobenzene-d5	11.204	82	10296	500.00		0.00
System Monitoring Compounds		1			, ~	
34) 4-Bromofluorobenzene (.	12.043	95	8561	374.85	pptv	0.00
Spiked Amount 500.000	Range 50	- 150	Recove	ry =	74.97%	
Target Compounds				~ %	, Š	alue
						,

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 2

No Name Entered Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\AUG2024\AUG06\

Data File: 06AUG13.D

Acq On : 6 Aug 2024 10:26 pm

Operator : BEP Sample : blk-c8345

Misc

Target Compounds

ALS Vial Sample Multiplier: 1

Quant Time: Aug 06 22:58:00 2024 Quant Method : C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 02 14:17:01 2024

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev (Min)
Internal Standards					
1) Bromochloromethane	7.659	49	16537	500.00 ppt	v # 0.00
20) 1,4-Difluorobenzene	8.843	114	31068	500.00 ppt	v 0.00
28) Chlorobenzene-d5	11.188	117	29673	500.00 ppt	v 0.00
		7			t., , -
System Monitoring Compounds	t			**	·
34) 4-Bromofluorobenzene (12.027	95	12021,	365.31 ppt	v 0.00
Spiked Amount 500.000	Range 50	- 150	Recove	= 73	.06%
				¥ 4*	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Qvalue ...

Time-->

No Name Entered Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\AUG2024\AUG06\

Data File: 06AUG15.D

Acq On : 6 Aug 2024 11:58 pm

Operator : BEP

Sample : blk-49967 7416404 1

Misc : *

ALS Vial : 11 Sample Multiplier: 1

Quant Time: Aug 07 14:55:09 2024

Quant Method: C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 02 14:17:01 2024

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits De	ev (Min)
Internal Standards						*
1) Bromochloromethane	7.658	49	16136	500.00	pptv	.# 0.00
20) 1,4-Difluorobenzene	8.842	114	30838	500,00	pptv	0.00
28) Chlorobenzene-d5	11.186	117	29107	500.00	pptv	0.00
System Monitoring Compounds						1
34) 4-Bromofluorobenzene (. 12.025	95	11659	361.20		
Spiked Amount 500.000	Range 50	- 150	Recove	ry =	72.24	ક
Target Compounds	(واف معر		, ,	value

(#) = qualifier out of range (m) = manual integration (+) = signals summed

C:\msdchem\1\data\2024\AUG2024\AUG06\
06AUG15.D Data Path

11:58 pm

Data File

6 Aug 2024 BEP. Operator Acq On

Sample

blk-49967 Misc

Sample Multiplier: 1 . 11 ALS Vial

C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M OLast Update : Fri Aug 02 14:17:01 2024 Response via : Initial Calibration TO-15 Vapor analysis Quant Time; Aug 07 14:55:09 2024 Quant, Method :: Quant Title

Č				1 / Colye	1 2 ₀		And the second s			, F
Danidarioc	40000	35000	30000	25000	20000	15000	10000		5000	†0 / 5mir
:	trv	,		in Consus	they we		The state of the s	The state of the s		00 8 09 6
	*	ţ		(and and		1 1 2 2 2 2 2 2 2 2		3 50 4 00 4
ī	÷.			r _r -nu.	M .			1	To the Total Control of the Control	7 00 4 60 6 00 6 60 6 60 6 60 6 60 6 60
		,		,				170		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	,	,	· •	-	** ·	***	State of the state			7 00 7
_			SI,ansdi	emonoldòòmon8		* . d	The state of the s	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		SI,enaznedo	noulīi ⊡- ₽,ſ		***************************************	š.	25 V 17	4	· .	
IIO. WOOD IS.D.Wata.IIIS				ž nyek	(⁾ \$		a service of the serv	A Comment of the Comm	The state of the s	
	/ 81'	do robenzene- d5	чэсн			1 -	i. s	± 1	\$ ±	
		^		S,(878) ensznedc	Bromofluord ,	- b : x - '		empy 5	, <u>'</u>	
	-		· ·			,		et h	en Andrew Length of Hermony Reference	
		`		÷.,	***			2 2 1 5 5	ve ve	
						95 · · · · · · · · · · · · · · · · · · ·		most st		, , ,
I.v			ţ			1 0 ~ 25%	Service of the servic			

No Name Entered Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\AUG2024\AUG26\

Data File : 26AUG17.D

Acq On : 26 Aug 2024 11:04 pm

Operator : BEP

2416404-14 Sample : BLK-802

Misc : *

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Aug 27 15:09:14 2024 Quant Method : C:\msdchem\1\methods\2024\202408\23-1041\TO15_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update: Fri Aug 23 14:02:10 2024 Response via: Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.260 8.495 10.883	49 114 117	23951 55174 32400	500.00 500.00 500.00	pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000	. 11.707 Range 50	95 - 150		453.04 ry =	pptv 90.61%	0.00
Target Compounds					Qva	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

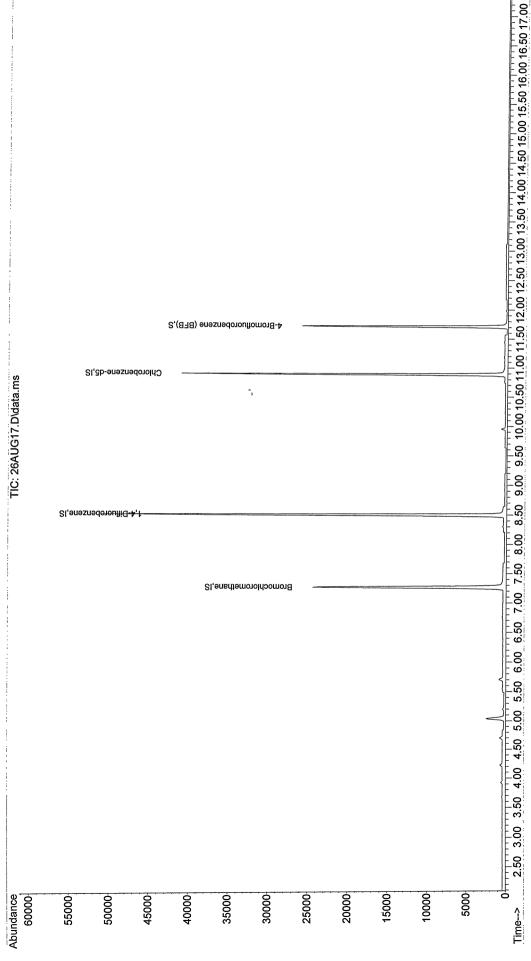
C:\msdchem\1\data\2024\AUG2024\AUG26\
26AUG17.D Data Path

Data File

26 Aug 2024 Acq On

11:04

BLK-802 BEP Operator Sample


Misc

Sample Multiplier: ALS Vial

Time: Aug 27 15:09:14 2024 Method : C:\msdchem\1\methods\2024\202408\23-1041\T015_SIM.M Title : TO-15 Vapor analysis Quant Method Quant

Fri Aug 23 14:02:10 2024 Initial Calibration QLast Update Quant

Response via

Page:

No Name Entered Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP09\

Data File : 09SEP23.D

Acq On : 10 Sep 2024 4:58 pm

Operator : BEP

Sample : blk-37519

Misc

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Sep 11 11:28:22 2024

Quant Method : C:\msdchem\1\methods\2024\202409\03-2116\T015_SIM.M

Quant Title : TO-15 Vapor analysis QLast Update : Wed Sep 04 09:00:16 2024

Response via : Initial Calibration

Compound	R.T. QIO	on Response	Conc Units Dev	(Min)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene 29) Chlorobenzene-d5	7.259 4 8.495 11 10.883 11	31130	500.00 pptv 500.00 pptv 500.00 pptv	0.00 0.00 0.00
System Monitoring Compounds 36) 4-Bromofluorobenzene (Spiked Amount 500.000	. 11.708 9 Range 50 - 1		441.65 pptv ery = 88.33%	0.00
Target Compounds			Qva	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

```
250 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00
                                                                                                                                                                                                                                                                                              8-Bromofluorobenzene (BFB),5
     (QT Reviewed)
                                                                                                                                                                                                                        Chlorobenzene-d5,1S
                                                                                                                                                                     TIC: 09SEP23.D\data.ms
                                                                                                              C:\msdchem\1\methods\2024\202409\03-2116\T015 SIM.M
Quantitation Report
                                                                                                                                                                                                          SI, eneznedeneufiid-4, f
                    C:\msdchem\1\data\2024\SEP2024\SEP09\
09SEP23.D
                                                                                                                                                                                                                                                                                                               Bromochloromethane,1S
                                                                                                                                  Wed Sep 04 09:00:16 2024
Initial Calibration
                                                                                 Sample Multiplier: 1
                                                                                                                        TO-15 Vapor analysis
                                         4:58 pm
   דיס דימוווכ בחורפדפם
                                                                                                      Sep 11 11:28:22 2024
                                         10 Sep 2024
                                                             blk-37519
                                                   BEP
                                                                                                               Method
                                                                                                                                   QLast Update
                                                                                                                                              Response via
                                                                                                      Time:
                                                                                                                         Quant Title
                      Data Path
Data File
                                                   Operator
Sample
Misc
                                                                                ALS Vial
                                                                                                                                                                 Abundance
38000-
                                                                                                                                                                                                                                                                                                                                            20000
                                                                                                                                                                                                                                                                                                                                                                                                   14000
                                                                                                                                                                                                                                                                                                                                                                                                                                        10000
                                                                                                                                                                                                                                                                                                                                                                                                                                                          8000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2000
                                                                                                                                                                                           36000
                                                                                                                                                                                                                               32000
                                                                                                                                                                                                                                                 30000
                                                                                                                                                                                                                                                                    28000
                                                                                                                                                                                                                                                                                      26000
                                                                                                                                                                                                                                                                                                        24000
                                                                                                                                                                                                                                                                                                                          22000
                                                                                                                                                                                                                                                                                                                                                               18000
                                                                                                                                                                                                                                                                                                                                                                                 16000
                                                                                                                                                                                                                                                                                                                                                                                                                     12000
                                                                                                                                                                                                             34000
                                          Acq on
                                                                                                               Quant
                                                                                                     Quant
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Time-->
```

Page:

No Name Entered Quantitation Report Data Path : C:\msdchem\1\data\2024\AUG2024\AUG01\\ Data File : 01AUG31.D Acq On : 2 Aug 2024 12:20 pm Operator : BEP : BLK-761 241 6404-16 Sample Misc ALS Vial : 7 Sample Multiplier: 1 Quant Time: Aug 02 14:51:34 2024 Quant Method: C:\msdchem\1\methods\2024\202408\01-2136\T015 SIM.M Quant Title : TO-15 Vapor analysis QLast Update : Fri Aug 02 14:17:01 2024 Response via : Initial Calibration Compound R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane 13808 500.00 pptv # 0.00 30939 500.00 pptv 0.00 29094 500.00 pptv 0.00 7.659 49 20) 1,4-Difluorobenzene 8.843 114 28) Chlorobenzene-d5 11.188 117 System Monitoring Compounds 34) 4-Bromofluorobenzene (... 12.027 95 12294 381.04 pptv : 0.00° Spiked Amount 500.000 Range 50 - 150 Recovery = 76.21%

Target Compounds

Ovalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

C:\msdchem\1\data\2024\AUG2024\AUG01\ 01AUG31.D Data Path Data File

12:20 pm 2 Aug 2024 Acq on

BLK-761 BEP Operator Sample

Misc

Sample Multiplier: ALS Vial

02 14:51:34 2024 Time: Aug Quant

C:\msdchem\1\methods\2024\202408\01-2136\T015_SIM.M TO-15 Vapor analysis Fri Aug 02 14:17:01 2024 Calibration Initial QLast Update Method Response via Title Quant Quant

2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 -Bromofluorobenzene (BFB),S SI, 3b-enesne-d5, 1S TIC: 01AUG31.D\data.ms SI, eneznedoroufii d-Si,ensthemoroldoomor8 2000 35000 30000 40000 25000 15000 Abundance 20000 10000 Time->

15:49:31,2024 ECD1 Tue Oct TO15_SIM.M 436

Page: 2

No Name Entered Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\2024\SEP2024\SEP20\

Data File : 19SEP17.D

Acq On : 21 Sep 2024 2:35 am

Operator : BEP

: BLK-744 24 1640 Sample

Misc

ALS Vial Sample Multiplier: 1

Quant Time: Sep 23 10:33:05 2024

Quant Method: C:\msdchem\1\methods\2024\202409\18-1821\T015_SIM.M

Quant Title : TO-15 Vapor analysis
QLast Update : Thu Sep 19 11:48:20 2024
Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev(Mi	.n)
Internal Standards 1) Bromochloromethane 20) 1,4-Difluorobenzene	7.629	49 114	23065	500.00 pptv0	 .00°
29) Chlorobenzene-d5 System Monitoring Compounds	11.152	117	42333 37348 ^.∞	500.00 pptv 0	.00
36) 4-Bromofluorobenzene (. 11.985 Range 50		17897 Recove:	429.64 pptv 0. ry = 85.93%	
Target Compounds				, Ozza 1 11	_

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Qvalue

ort (QT Reviewed)

Data Path C:\msdchem\1\data\2024\SEP2024\SEP20\Data File 19SEP17.D
Acq On 21 Sep 2024 2:35 am
Operator BEP
Sample 1BLK-744
Misc 1*
ALS Vial 7 Sample Multiplier: 1

C:\msdchem\1\methods\2024\202409\18-1821\T015 SIM.M Thu Sep 19 11:48:20 2024 TO-15 Vapor analysis, 😭 Calibration 23 10:33:05 2024 QLast Update': Method Response via Quant | Quant | Quant

4-Bromofluorobenzene (BFB),S TIC: 19SEP17.D\data.ms 45000 40000 35000 30000 25000 Abundance . ₹ 50000

·2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 Time-->

Date of Report: 11/11/2024

Yola Byram

Catalyst Environmental Solutions 315 Montana Ave Suite 311 Santa Monica, CA 90403

Client Project: [none]

Pace Project: Walnut Bluff
Pace Work Order: 2416404

Invoice ID: B506064, B507753

Enclosed are the results of analyses for samples received by the laboratory on 10/10/2024. If you have any questions concerning this report, please feel free to contact me.

Revised Report: This report supersedes Report ID 1001544909

Sincerely,

Contact Person: Brianna Schutte

Client Services Rep

Steven Bennett

Steve Bennett

Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample	e Information	
	Case Narrative	3
	Case Narrative	4
	Chain of Custody and Cooler Receipt form	5
	Laboratory / Client Sample Cross Reference	9
Sample	e Results	
_	2416404-01 - WB01-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	12
	2416404-02 - WB02-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	14
	2416404-03 - WB03-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	16
	2416404-04 - WB04-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	18
	2416404-05 - WB05-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	20
	2416404-06 - WB06-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	22
	2416404-08 - WB08-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	24
	2416404-09 - WB09-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	26
	2416404-10 - WB10-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	28
	2416404-11 - WB11-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	30
	2416404-12 - WB12-1H	00
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	32
	2416404-13 - WB13-1H Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	24
	2416404-14 - WB14-1H	34
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	26
	2416404-15 - WB17-1H	30
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	20
	2416404-16 - WB18-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	40
	2416404-17 - WB19-1H	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	42
Quality	/ Control Reports	42
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	
	Method Blank Analysis	11
	Laboratory Control Sample	
Notes		ті
.10163	Notes and Definitions	50
	110100 UNG DOMINUTIO	

Case Narratives

Case Narrative for Work Order 2416404

Notified client via email sample number 2416404-07 with the sample name WB07-1H was received fully evacuated

Reported: 11/11/2024 15:09 Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Case Narrative

Sample Receipt

COC Number:

Samples received refrigerated to 25 °C

Sample List

Lab Number	Date/Time Sampled	Sample Name
2416404-01	10/09/2024 09:59	WB01-1H
2416404-02	10/09/2024 11:31	WB02-1H
2416404-03	10/09/2024 11:33	WB03-1H
2416404-04	10/09/2024 11:46	WB04-1H
2416404-05	10/09/2024 12:08	WB05-1H
2416404-06	10/09/2024 11:42	WB06-1H
2416404-07	10/09/2024 09:42	WB07-1H
2416404-08	10/09/2024 12:11	WB08-1H
2416404-09	10/09/2024 12:24	WB09-1H
2416404-10	10/09/2024 12:20	WB10-1H
2416404-11	10/09/2024 12:51	WB11-1H
2416404-12	10/09/2024 12:58	WB12-1H
2416404-13	10/09/2024 10:09	WB13-1H
2416404-14	10/09/2024 10:19	WB14-1H
2416404-15	10/09/2024 14:37	WB17-1H
2416404-16	10/09/2024 14:56	WB18-1H
2416404-17	10/09/2024 10:54	WB19-1H

Requested Analysis

EPA-TO-15-SIM

Analyte Sample Flag

Sample Qualifier Summary

There are no qualifiers for the samples.

Holding Times

All holding time requirements were met.

Method Blanks

There were no detections in the Method Blank(s).

LCS

The LCS recoveries are within QC limits.

Discussion

Page 4 **442** 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Project #: Pro	Chain of	Start Sampling Stop Sampling Information	Canister Canister Pressure Pressure Pressure Canister Can	9:00 29 959	1051 29 1131	3 1035 27 1133 4	1047 29 1146	5 1106 29 1208 4 86 1043 30 1142 4	836 28 0942	7 1111 29 1211 4	77	2 1117 28 1220 3	F 1152 27 1251 F	1158 28 1258	0910 28 (009 6	101 - 1011	hay** 3 Day** 1 Day**	1. Received By 4:15 Pm 10/9/214 1/01	Date Trop 1	
Project #: Project Name: Wellaut Bluff Mark Plan Chuff Mark Plan Chuff Mark Plan Chuff Mark Plan Chuff Hogan Chuid Chuid Chuid Hogan Chuid	Analysis Requested Comments:	Sampling Equipment	(V2) roqsV ito (A) insidmA swzesty leitie (gH°)	A 21 0187	A 29	77	A 29 23 803	A 30 43 53	A 28 0790	A 29 49958	A 29 0800	A 28	4 21	A 28 C8345	A 78 49967		(g Days) 5 Day**	10/1/24 Date	Date!	
	Project #: Project Nai Boluff	(Print)	Date Time	10 9 24 0959	10 9 24 1131	10 9 24 11 23	1 10 9 24 11 11 10	10 9 24 1142	10 9 24 0942	10 9 24 12 11	10 9 24 12.24	10 9 124 1220	-1H 18 9 24 1251	- 1H (0 9 24 12.58	POOT 12 1 101 HI-		"Surchargo	Million Committee Committe	Zip:	3. Retinguished By

Chain of Custody and Cooler Receipt Form for 2416404 Page 2 of 4 CLP Level

[2] Yes \quad \text{No} \text{(I''Yes'', Select onc)} □ppbv [\dug/m3 24 10-10-24 Air Chain of Custody Form ☐ 1 Day** UNITS (select one) N Z Z (bla oţ 16-16-24 Date Pressure (psia) OUT Lab Received 2 Day** ISTRI ("Hg) Stop Sampling Information 3 10 Time 1456 1,607 1437 4100 Atlas Ct. - Bakersfield, CA 93308 - 661.327.4911 - Fax: 661.327.1918 - www.bclabs.com Start Sampling Information Canister Pressure ("Hg) 3 Day** 30 29 ¥ 29 Time 1330 1352 0952 Flow Controller 4 Day** 13677 13898 (e032 Sampling Equipment # (1) 37519 744 Canister # CI 1910 16:0101 ☐ 5 Day** Air Type Initial Pressure (%H%) 30 79 5 Soil Vapor (SV) (A) maidmA 4 K 4 W1591-01 X Result Reque Sampler(s): (Print) Elizubeth Hwang Project Name: Welraut Bluff 1456 10501 1437 Olivia Hogan 74 10 9 24 7 Work Plan 0 5 0 2 Client: Catalyst Environ mental Solution Project #: Zip: Point Of Collection Fax: W819-11 WB18-1H WEIN-IH City, State, Zip: Sonta Monica, CA, 10403 Street Address: 315 Montana Ave. 311 Email: y boyram C ce. solutions Work Order #: 24/-/6404 State: Phone: (313) 204 - 8477 Fax: Attn: Yola Bayrom Street Address: Sample # Client: P.O.#: City: Attn:

Chain of Custody and Cooler Receipt Form for 2416404 Page 3 of 4 PACE ANALYTICLA COOLER RECEIPT FORM Submission #: 24 -16404 Page SHIPPING INFORMATION SHIPPING CONTAINER Fed Ex 🗆 ·UPS 🗆 GSO / GLS □ Hand Delivery □ FREE LIQUID Ice Chest 🗆 Pace Lab Field Service None □ Box Ø Other □ (Specify)_ YES I NO Z Other (Specify) W / S Refrigerant: ice 🗆 Blue Ice □ None 🗹 Other 🗆 Comments: Custody Seals ice Chest □ Containers 🗀 None ☑ Comments: Intact? Yes ☐ No ☐ Intact? Yes . No All samples received? Yes ☐ No ☐ All samples containers intact? Yes □ No □ Description(s) match COC? Yes □ No □ COC Received Emissivity: _____ Container: Sivud Thermometer ID: ZÍ YES □ NO Date/Time 10/10/14 Temperature: (A) ROUM ·c 1 (c) Temp Analyst Init &CZ 1745 SAMPLE NUMBERS SAMPLE CONTAINERS OT PE UNPRES 40z/80z/160z PE UNPRES 202 Cr*6 OT INORGANIC CHEMICAL METALS INORGANIC CHEMICAL METALS 40z / 80z / 160z PT CYANIDE PT NITROGEN FORMS PT TOTAL SULFIDE 20z. NITRATE / NITRITE PT TOTAL ORGANIC CARBON PT CHEMICAL OXYGEN DEMAND PtA PHENOLICS 40mi VOA VIAL TRAVEL BLANK 40ml VOA VIAL QT EPA 1664B PT ODOR RADIOLOGICAL BACTERIOLOGICAL 40 ml VOA VIAL- 504 QT EPA 508/608.3/8081A QT EPA 515.1/8151A **QT EPA 525.2** QT EPA 525.2 TRAVEL BLANK 40ml EPA 547 40ml EPA 531.1 80z EPA 548.1 QT EPA 549.2 QT EPA 8015M OT EPA 8270C 80z/160z/32oz AMBER 80z/160z/320z JAR SOIL SLEEVE PCB VIAL PLASTIC BAG TEDLAR BAG FERROUS IRON ENCORE SMART KIT SUMMA CANISTER Sample Numbering Completed By: VIII Date/Time: 16/11/74 0700 A = Actual / C = Corrected Rev 23 05/20/22 [S::WPDoc:WordPerfect!LAB_DOCS:FORMS:SAMRECray 20]

Chain of Custody and Cooler Receipt Form for 2416404 Page 4 of 4

SHIPPING INFORMATION Pace Lab Field Service SO(LSC) Mand Delivery Dother Specify. ShipPing GonTainer Pace Lab Field Service So(LSC) Mand Delivery Dother Do	PACE ANALYTICLA Submission #: QV - 16 40	a + c	OULER	RECEIP	TFORM			Page _	<u>Of_</u>	<u> </u>	
Fad Ex UPS SSO CLS Hand Delivery Dice Chest Spocity VES NO Other Specify VES NO	SHIPPING INFO	MATION									
Roffrigerant: Ice Blue Ice None Other Comments: Custody Seals Ice Cite Cite	Fed Ex UPS GSO / GI	S □ H	and Deliv	ery □	Ice Cl	SHIPPINO nest □	CONTA None □	INER Box 🗹		FREE LIC	QUID
Custody Seals Eco. Creet. To Containers Intert? Yes No Description(s) match COC? Yes Description					I P	er 🗆 (Sp	ecify)			. W /	s I
All samples received? Yes No Description(s) match COC? Yes No Desc	Refrigerant: Ice Blue Ice										
COC Received YES IND Emissivity:	Custody Seals ice Chest	Contain	ers:⊡, ⊡ No □	None	Com	ments:					
COC Received YES NO Temporature: (A) ROW 10 (C) Temp 10 Date/Time 10/10/10/11 Analyst Int ECC 1715 SAMPLE CONTAINERS 1 2 3 4 5 6 7 8 9 10 TYPE DIVINERS 10 2 1 4 5 6 7 8 9 10 TYPE DIVINERS 10 2 1 4 5 6 7 8 9 10 TYPE CONTRES		All samples	containe	s intact?	Yes N	o 🗆	Descri	ofion(s) ma	tch COC2	Vac Na	
TEMPORES SAMPLE CONTAINERS SAMPLE NUMBERS 1 2 3 4 5 6 7 6 9 10 10 10 10 10 10 10 10 10 10 10 10 10	COC Received En	ilssivity:		ontalner:	Simuy	Thermome	ter ID:	-			
SAMPLE CONTAINERS 1 2 3 4 5 0 7 6 9 10 50 50 50 11 50 FE UNPRES 2 7 1 5 9 10 50 50 50 11 50 FE UNPRES 2 7 1 5 9 10 50 50 50 11 50 FE UNPRES 50 7 6 9 10 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5	✓ YES □ NO Te	mperature:	(A) R	COA	°C /	(C) To	~~ ?M#		Analyst		
2 3 4 5 6 7 1 9 10		T							Allalyst	init occ	1117
PITE DUPRES SEC SC		1	2	<u> </u>	1 4		7		1 -	 _	
DE PASSES TRAVEL BLANK DEPASSES TRAVEL BLANK DEP						†		† -	+ -		1 10
DY INORGANIC CHEMICAL METALS NORGANIC CHEMICAL METALS deaf 1 see 1 see 1 TO CYAINDE T TOTAINDE T NITROGEN FORMS T TOTAIN SUPPLE SUPPLIES SUPPLIES T NITROGEN FORMS T TOTAIN SUPPLE T TOTAI SUPPLE SUPPLIES SUPPLIE											1
NORGANIC CHEMICAL METALS 402 / Bost / 1 foor	20z Cr ⁻⁴	 								T	+-
T CYANDE T TOTAL SULFIDE 20. NITRATE / INTRITE T TOTAL ONYGEN DEMAND T CHEMICAL ONYGEN DEMAND TA PHENDLICS 6001 YOA VIAL TODOR THE PASSES THAN THE SULFT SU											
T TYTROCEN FORMS 1 TOTAL SULFIDE 2 NITRATE, INTRITE T TOTAL ORGANIC CARBON T CEBRICAL OXYGEN DEMAND 1 APPEROLICS 6mil VOA VIAL TRAYEL BLANK 6mil VOA VIAL T EPA 164B T ODOR ADIOLOGICAL ADIOLOGICAL 1 MI VOA VIAL 564 1 EPA 515.1851A 1 EPA 515.1851A 1 EPA 515.2 TRAYEL BLANK 1 mil EPA 347 1 mil EPA 347 1 mil EPA 347 1 mil EPA 347 1 mil EPA 349 1 mil EPA 340 1 mi									T -	T -	
TOTAL SULFIDE W. NITRATE / NITRITE TOTAL ORGANIC CARBON T CHEMICAL OXYGEN DEMAND AN PIEROLICS Omil YOA VIAL T EPA 1646B T OPOR ADDIOLOGICAL ACTERIOLOGICAL AND WAY A VIAL T EPA 508068380831A T EPA 508068380831A T EPA 515.1815.1A T EPA 515.1815.1A T EPA 515.1815.1A T EPA 545.2 T EPA 551.1 T EPA 545.2 T EPA 545.2	PT CYANIDE										
DE. NITRATE/NITRITE T TOTAL ORGANIC CARBON T GERMICAL ORYGEN DEMAND PA PHENOLICS BOBLYOA VIAL TRAVEL BLANK BOBLYOA VIAL TRAVEL BLANK BOBLYOA VIAL TRAVEL BLANK BOBLYOA VIAL TRAVEL BLANK BOBLYOA VIAL TO BOBLY TRAVEL BLANK BOBLYOA VIAL S64 T EPA 515.13 T EPA 515.13 T EPA 515.13 T EPA 515.14 T EPA 515.14 T EPA 515.15 T EPA 515.21 T EPA 515.31 T EPA 5	PT NITROGEN FORMS	 	-							1	1
T TOTAL ORGANIC CARBON T GERMICAL OXYGEN DEMAND 14 APHENOLICS 16 MI YOA VIAL TRAVEL BLANK 17 EPA 15454B T OPOR ADIOLOGICAL ACTERIOLOGICAL ADI IVAL 504 T EPA 505808 34091A T EPA 505808 34091A T EPA 5058.3 T EPA 505.3 T EPA 505.3 T EPA 555.3 T EPA 551.38151A T EPA 551	PT TOTAL SULFIDE	<u> </u>	-							1	1
T CHEMICAL OXYGEN DEMAND AD PIEROLICS OMI VOA VIAL TRAVEL BLANK OMI VOA VIAL T EPA 1656B T ODOR ADIOLOGICAL OMI VOA VIAL SOM T EPA 5808, 34081A T EPA 5815, 38151A T EPA 5816, 3815A T EPA 5816, 3815A T EPA 5817, 3815A T EPA 5818, 3815A T EPA 5818, 3815A T EPA 5818, 3815A T EPA 5818, 3815A T EPA 5818 T EPA 5818 T EPA 5818 T EPA 5818 T EPA 5817 T EPA 5818 T EP	20z. NITRATE / NITRITE	 	-							<u> </u>	
14 PHENOLICS 16 17 17 17 18 18 18 18 18			 						<u>- </u>		
### OF THE PART OF			-	<u> </u>							
### OF PART OF		-	_	<u> </u>							
TT EPA 515.12 TEPA 515.13 TEPA			 	<u> </u>	 	ļ <u> </u>					
TOPOR ADIOLOGICAL Delta Control Color Colo		-	 		ļ						
ADIOLOGICAL ACTERIOLOGICAL Del VQA VIAL 504 T EPA 517 SISSIA T EPA 518 SISSIA T EPA 525.2			 	 	 	<u> </u>	ļ				
ACTERIOLOGICAL 0 ml VOA VIAL - 504 IT EPA 505408.38081A IT EPA 505408.38081A IT EPA 515.18151A IT EPA 515.2 IT EPA 525.2		╂——	 	 	<u> </u>	 	1				
0 mi VOA VIAL- 504 IT EPA 508/608.3/8081A IT EPA 515.1/8151A IT EPA 525.2 IT EPA 547 Imil EPA 547 Imil EPA 547 Imil EPA 5481 IT EPA 549.2 IT EPA 549.2 IT EPA 549.2 IT EPA 520.2 It EPA 8270C It EPA 827		╂	 	 	 		<u> </u>				
TEPA 508/08.3/8081A TEPA 515.1/8151A TEPA 525.2 TEPA 525.2 TEPA 525.2 TEPA 525.2 TEPA 547 DIBLEPA 547 DIBLEPA 531.1 DIELEPA 531.1 DIELEPA 531.1 DIELEPA 549.2 TEPA 849.2 TEPA 849.2 TEPA 8015M TEPA 8270C W/ 1602/ 3202 AMBER DIELEPA 501.5 W/ 1602/ 3202 AMBER DIELEPA 501.5 DIELEPA 502 DIELEPA 502 DIELEPA 503.5 DIELE			+	<u> </u>	 						
TEPA 515.1/8151A TEPA 525.2 TRAVEL BLANK Imit EPA 547 Imit EPA 547 Imit EPA 548.1 TEPA 59.2 TEPA 549.2 TEPA 549.2 TEPA 549.2 TEPA 819.0 TEPA 8270C Int Inter System Int Inter System Int EPA 8270C Int Inter System Int Int Inter System Int Int Inter System Int Int Inter System Int		╂	 		<u> </u>	 	<u> </u>				
TEPA 525.2 TRAVEL BLANK Dini EPA 547 Dini EPA 531.1 TEPA 526.81 TEPA 549.2 TEPA 549.2 TEPA 8015M TEPA 8010M TEPA 8270C DZ 1602/320z AMBER DZ 1602/320z AMBER DZ 1602/320z JAR DIL SLEEVE CB VIAL LASTIC BAG EDLAR BAG ERROUS IRON NCORE MART KIT DIMMA CANISTER JEL A A A A A A A A A A A A A A A A A A A		 	-	<u> </u>	 		-		<u> </u>		
TEPA 525.2 TRAVEL BLANK Imil EPA 547 Imil EPA 531.1 Imil EPA 548.1 T EPA 549.2 T EPA 8015M T EPA 8015M T EPA 8270C Imil India / January Amber Imil India / Januar		 	-	 		<u> </u>					
Imit EPA 547 Imit EPA 531.1 Imit EPA 548.1 T EPA 549.2 T EPA 8015M T EPA 8270C Init Isacr / 32oz Amber Init Isacr		 		 		<u> </u>					
Imit EPA 531.1 Diz EPA 549.2 T EPA 549.2 T EPA 8015M T EPA 8270C Diz / 160z / 320z AMBER DIL SLEEVE CB VIAL LASTIC BAG EDLAR BAG CRROUS IRON NCORE MART KIT DIMMA CANISTER MIMMA		 	 		<u> </u>	<u> </u>					
TEPA 549.2 TEPA 8015M TEPA 8270C W/160z/32oz AMBER W/160z/30z JAR DIL SLEEVE CB VIAL LASTIC BAG EDLAR BAG ERROUS IRON NCORE MART KIT DIMMA CANISTER MINIMA CANISTER MINIMA CANISTER MINIMA COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE INDIP Numbering Completed By: V/3/ DISTRIBUTE COMPLETE DIMMA COMPLETE DIMMA CANISTER MINIMA CANISTER MINIMA CANISTER MINIMA COMPLETE DIMMA CANISTER MINIMA CAN		 	 				 				
T EPA 549.2 T EPA 8015M T EPA 8270C NZ / 160z / 320z AMBER NZ / 160z / 320z JAR DIL SLEEVE CB VIAL LASTIC BAG EDLAR BAG ERROUS IRON NCORE MART KIT DIMMA CANISTER MINISTER M		 			<u> </u>	 -	 		<u> </u>		
T EPA 8015M T EPA 8270C 52/1602/320z AMBER 52/1602/320z JAR DIL SLEEVE CB VIAL LASTIC BAG EDLAR BAG CRROUS IRON NCORE MART KIT DIMMA CANISTER MINISTER MI		 	 		<u> </u>		<u> </u>				
T EPA 8270C pz/16cz/32cz AMBER pz/16cz/32cz JAR pll SLEEVE CB VIAL LASTIC BAG EDLAR BAG CRROUS IRON NCORE MART KIT DMMA CANISTER MINISTER MINIST		 	 		<u> </u>						
DIL SLEEVE CB VIAL LASTIC BAG EDLAR BAG CRROUS IRON NCORE MART KIT DIMMA CANISTER MINISTER MINIST				 		 	<u> </u>	ļ			
DIL SLEEVE CB VIAL LASTIC BAG EDLAR BAG CRROUS IRON NCORE MART KIT DIMMA CANISTER MINISTER MINIST		1	 	 	<u> </u>		<u> </u>	<u> </u>			
DIL SLEEVE CB VIAL LASTIC BAG EDLAR BAG ERROUS IRON NCORE MART KIT DIMMA CANISTER MILL A A A A A A A IMPRIENT COMPLETE CONTROL TO DESCRIPTION OF THE CONTROL TO DESCRIPTION OF		1		<u> </u>		<u> </u>			ļ . <u>.</u>		
CE VIAL LASTIC BAG EDLAR BAG ERROUS IRON NCORE MART KIT DIMMA CANISTER MINISTER MINISTER			 -		<u> </u>	-	 				
EASTIC BAG EDLAR BAG ERROUS IRON NOORE MART KIT DIMMA CANISTER MILL A A A A A A A Imments: Tiple Numbering Completed By: NOORE DESCRIPTION: KILL BALL CAND		 	 			 	ļ. <u>. </u>	 			
EDLAR BAG ERROUS IRON NCORE MART KIT DIMMA CANISTER MINISTER MI		 	 -	<u> </u>	-			<u> </u>			
PERROUS IRON NOORE MART KIT DAMA CANISTER MINISTER MI		1				-			<u></u>		
MART KIT JAMA CANISTER Minents: Imple Numbering Completed By: MART KIT A A A A A A A A A A A A A A A A A A A		 	 			 	 	 			
MART KIT MMA CANISTER		 	 			 		 			
MMA CANISTER // A A A A A A A A A A A A A A A A A A			 -				 				
minents: mple Numbering Completed By: \\ \f\ \f\ \f\ \f\ \f\ \f\ \f\ \f\ \f\		-	-								
mple Numbering Completed By: \\[\frac{1}{2} \] PatelTime: \(\frac{1}{2} \) \[\frac{1}{2} \]	UMINIA CANISTER	1+	<u> </u>	<i>/</i> +	LA	LA		_ /A			
Aprila C = Covered	omments:	1183									
Actual / C = Coffected [S:WPDocWordPerfectLAB_DOCS-PORMS:SAMREFORM 20]	imple Numbering Completed By: = Actual / C = Corrected	VB7		Date	/Time: <u>/</u>	11/24	0700				

Reported: 11/11/2024 15:09 Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Laboratory / Client Sample Cross Reference

2416404-01	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 09:59
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB01-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
	Campica By.		Oumple Type.	7 7
2416404-02	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 11:31
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB02-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
2416404-03	COC Number:		Receive Date:	10/10/2024 17:45
				
	Project Number:		Sampling Date:	10/09/2024 11:33
	Sampling Location:	 NAPO 411	Sample Depth:	
	Sampling Point:	WB03-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
2416404-04	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 11:46
	Sampling Location:		Sample Depth:	
		WB04-1H	Lab Matrix:	Air
	Sampling Point:	Elizabeth Hwang/Olivia Hogan		Air Filter
	Sampled By:	Elizabetti riwang/Olivia riogan	Sample Type:	All I litel
2416404-05	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 12:08
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB05-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
2416404-06	COC Number:		Receive Date:	10/10/2024 17:45
				
	Project Number:		Sampling Date:	10/09/2024 11:42
	Sampling Location:	 WD00 411	Sample Depth:	Α:
	Sampling Point:	WB06-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
2416404-07	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 09:42
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB07-1H	Lab Matrix:	Air
	Sampling Point:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter

Page 9 **447**

Reported: 11/11/2024 15:09 Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
2416404-08	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 12:11
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB08-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
2416404-09	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 12:24
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB09-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
2416404-10	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 12:20
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB10-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
2416404-11	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 12:51
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB11-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
2416404-12	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 12:58
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB12-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
2416404-13	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 10:09
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB13-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
2416404-14	COC Number:		Receive Date:	10/10/2024 17:45
	Project Number:		Sampling Date:	10/09/2024 10:19
	Sampling Location:		Sample Depth:	
	Sampling Point:	WB14-1H	Lab Matrix:	Air
	Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Laboratory / Client Sample Cross Reference

Project Number: Sampling Date: 10/09/2024 of Sampling Date: Sampling Date: Sampling Date: Sampling Date: Sampling Date: Sampling Date: Sampling Point: WB17-1H Lab Matrix: Air Sampled By: Elizabeth Hwang/Olivia Hogan Sample Type: Air Filter 2416404-16 COC Number: Sampling Date: 10/10/2024 of Sampling Date: 10/09/2024 of Sampling Date: 10/09/2024 of Sampling Date: Sampled By: Elizabeth Hwang/Olivia Hogan Sample Type: Air Filter 2416404-17 COC Number: Receive Date: 10/10/2024 of Sample Date: 10/10/2024 of Sampled Date: 10/	Laboratory	Client Sample Informati	on		
Sampling Location: Sampling Point: Sampled By: COC Number: Project Number: Sampling Location: Sampling Location: Sampled By: COC Number: Sampling Location: Sampling Location: Sampling Point: Sampling Point: Sampling Point: Sampled By: COC Number: Sampling Point: Sampled By: COC Number: Sampled By: COC Number: Sampled By: COC Number: Sampled By: COC Number: Sampled By:	2416404-15	COC Number:		Receive Date:	10/10/2024 17:45
Sampling Point: Sampled By: WB17-1H Elizabeth Hwang/Olivia Hogan Sample Type: Air Filter 2416404-16 COC Number: Receive Date: 10/10/2024 19		Project Number:		Sampling Date:	10/09/2024 14:37
Sampled By: Elizabeth Hwang/Olivia Hogan Sample Type: Air Filter 2416404-16 COC Number: Receive Date: 10/10/2024 1 Project Number: Sampling Date: 10/09/2024 1 Sampling Location: Sampling Point: WB18-1H Lab Matrix: Air Sampled By: Elizabeth Hwang/Olivia Hogan Sample Type: Air Filter 2416404-17 COC Number: Receive Date: 10/10/2024 1		Sampling Location:		Sample Depth:	
2416404-16 COC Number:		Sampling Point:	WB17-1H	Lab Matrix:	Air
Project Number: Sampling Date: 10/09/2024 1 Sampling Location: Sample Depth: Sampling Point: WB18-1H Sampled By: Elizabeth Hwang/Olivia Hogan Sample Type: Air Filter 2416404-17 COC Number: Receive Date: 10/10/2024 1		Sampled By:	Elizabeth Hwang/Olivia Hogan	Sample Type:	Air Filter
Project Number: Sampling Date: 10/09/2024 10 Sampling Location: Sampling Point: WB18-1H Lab Matrix: Air Sampled By: Elizabeth Hwang/Olivia Hogan Sample Type: Air Filter	2416404-16	COC Number:		Receive Date:	10/10/2024 17:45
Sampling Location: Sampling Point: Sampled By: WB18-1H Elizabeth Hwang/Olivia Hogan WB18-1H Sampled Type: Air Filter COC Number: Receive Date: 10/10/2024					10/09/2024 14:56
Sampling Point: Sampled By: WB18-1H Elizabeth Hwang/Olivia Hogan Sample Type: Air Filter 2416404-17 COC Number: Receive Date: 10/10/2024		•		· •	
Sampled By: Elizabeth Hwang/Olivia Hogan Sample Type: Air Filter 2416404-17 COC Number: Receive Date: 10/10/2024			WB18-1H	• •	Air
Teodive Bute.		. •	Elizabeth Hwang/Olivia Hogan		Air Filter
Teodive Bute.	2416404-17	COC Number:		Receive Date:	10/10/2024 17:45
Project Number: Sampling Date: 10/09/2024 1		Project Number:		Sampling Date:	10/09/2024 10:54
Sampling Location: Sample Depth:		•		· •	
Sampling Point: WB19-1H Lab Matrix: Air		. •	WB19-1H	• •	Air
Sampled By: Elizabeth Hwang/Olivia Hogan Sample Type: Air Filter		. •			

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none]
Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2	416404-01	Client Sampl	e Name:	WB01-1H	, 10/9/2024	9:59:00AM, Eliz	abeth Hwan	g/Olivia Hogan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		1.8	ug/m3	0.50	0.032	EPA-TO-15-SIM	ND	Quais	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		2
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		2
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		2
Chloroform		0.25	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		2
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		2
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		2
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		2
1,4-Dichlorobenzene		0.090	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	2
Dichlorodifluoromethane		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		2
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		2
1,2-Dichloroethane		0.11	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND		2
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		2
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		2
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		2
1,1-Difluoroethane		1.1	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	2
Ethylbenzene		0.57	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		2
Naphthalene		0.22	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		2
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		2
Toluene		2.8	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		2
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		2
1,1,2-Trichloro-1,2,2-trifluo	roethane	0.53	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		2
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		2
p- & m-Xylenes		2.0	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		2
o-Xylene		0.65	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2
Total Xylenes		2.6	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		2
4-Bromofluorobenzene (Sur	rogate)	91.1	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	103	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2
4-Bromofluorobenzene (Sur	rogate)	103	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Report ID: 1001550739 4100 Atias Court Bakerstield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Pa

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	2416404-01	Client San	nple Name: V	VB01-1H, 10	9/2024 9:59:00	AM, Elizabe	th Hwang/Oli	ivia Hogan
		-	Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	10/11/24 09:33	10/12/24 01:54	BEP	MS-A2	10	B198723	EPA TO-15
2	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 15:11	BEP	MS-A2	1	B198723	EPA TO-15

DCN = Data Continuation Number

Page 13 **451** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	16404-02	Client Sampl	e Name:	WB02-1H,	10/9/2024	11:31:00AM, Eliz	zabeth Hwan	g/Olivia Hogan	
Constituent		Postult	l lmi4c	PQL	MDL	Method	MB	Lab	DON
Constituent Benzene		Result 1.4	Units ug/m3	0.050	0.0032	EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		 1
Carbon tetrachloride		0.49	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		<u>·</u> 1
Chloroform		0.27	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		<u>·</u> 1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		 1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		0.12	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	1
Dichlorodifluoromethane		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.093	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
rans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		1.1	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.75	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.29	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
Tetrachloroethene		0.081	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND	J	1
Toluene		2.8	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		2.6	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.86	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		3.4	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surro	ogate)	109	%	50 - 150 (LCL	- UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surro	ogate)	109	%	50 - 150 (LCL	- UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surro	ogate)	92.5	%	50 - 150 (LCL	- UCL)	EPA-TO-15-SIM			2

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D : 2416404-02	Client San	Client Sample Name: WB02-1H, 10/9/2024 11:31:00AM, Elizabeth					QC tch ID 98723 EPA TO-15	
		-	Run				QC		
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 15:57	BEP	MS-A2	1	B198723	EPA TO-15	
2	EPA-TO-15-SIM	10/11/24 09:33	10/12/24 02:33	BEP	MS-A2	10	B198723	EPA TO-15	

DCN = Data Continuation Number

Page 15 **453** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	16404-03	Client Sample	e Name:	WB03-1H,	10/9/2024	11:33:00AM, Eliz	zabeth Hwan	g/Olivia Hogan	
Constituent		Postult	Heite	PQL	MDL	Method	MB	Lab	DOM
Constituent Benzene		Result 1.4	Units ug/m3	0.050	0.0032	EPA-TO-15-SIM	Bias ND	Quals	<u>DCN</u> 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		<u>.</u> 1
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		<u>'</u> 1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		<u>.</u> 1
Chloroform		0.23	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		<u>'</u> 1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		<u>·</u> 1
		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		<u>·</u> 1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		<u>'</u> 1
1,4-Dichlorobenzene		0.11	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	<u>·</u> 1
		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		 1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.093	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
rans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
rans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		1.1	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.81	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.20	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
Tetrachloroethene		0.090	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND	J	1
Toluene		2.6	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		2.8	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.91	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		3.7	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surro	ogate)	106	%	50 - 150 (LCL	- UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surro	ogate)	106	%	50 - 150 (LCL	- UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surro	ogate)	97.8	%	50 - 150 (LCL	- UCL)	EPA-TO-15-SIM			2

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID) : 2416404-03	Client San	ient Sample Name: WB03-1H, 10/9/2024 11:33:00AM, Elizabeth Hwang/Olivia Hogan								
		-	Run			QC					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID				
1	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 16:44	BEP	MS-A2	1	B198723	EPA TO-15			
2	EPA-TO-15-SIM	10/11/24 09:33	10/12/24 03:13	BEP	MS-A2	10	B198723	EPA TO-15			

DCN = Data Continuation Number

Page 17 **455** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2	416404-04	Client Sampl	e Name:	WB04-1H	, 10/9/2024	11:46:00AM, Eliz	zabeth Hwan	g/Olivia Hogan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		1.4	ug/m3	0.050	0.0032	EPA-TO-15-SIM	ND	Q uai3	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.23	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		0.10	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	1
Dichlorodifluoromethane		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.091	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		1.2	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.74	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.17	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		2.6	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluo	roethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		2.5	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.82	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		3.4	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Sur	rogate)	113	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	113	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	92.5	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D : 2416404-04	Client San	ent Sample Name: WB04-1H, 10/9/2024 11:46:00AM, Elizabeth Hwang/Olivia Hogan						
		-	Run						
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 17:30	BEP	MS-A2	1	B198723	EPA TO-15	
2	EPA-TO-15-SIM	10/11/24 09:33	10/14/24 20:42	BEP	MS-A2	10	B198806	EPA TO-15	

DCN = Data Continuation Number

Page 19 **457** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	16404-05	Client Sample	e Name:	WB05-1H,	10/9/2024	12:08:00PM, Eliz	zabeth Hwar	ng/Olivia Hogan	
Constituent		Postult	Haite	PQL	MDL	Method	MB	Lab	DOM
Constituent Benzene		Result 1.3	Units ug/m3	0.050	0.0032	EPA-TO-15-SIM	Bias ND	Quals	<u>DCN</u> 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		 1
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		<u>'</u> 1
Chloroform		0.20	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		 1
		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		<u>·</u> 1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		0.093	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	<u>·</u> 1
		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		 1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.092	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
I,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
rans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
rans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		1.1	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.58	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.38	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		2.3	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
√inyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		1.8	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.64	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		2.5	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surro	ogate)	108	%	50 - 150 (LCL	- UCL)	EPA-TO-15-SIM			1
1-Bromofluorobenzene (Surro	ogate)	108	%	50 - 150 (LCL	- UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surro	ogate)	95.0	%	50 - 150 (LCL	- UCL)	EPA-TO-15-SIM			2

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	2416404-05	Client San	nple Name: V	VB05-1H, 10	eth Hwang/O	eh ID 8723 EPA TO-15		
		-	Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 18:16	BEP	MS-A2	1	B198723	EPA TO-15
2	EPA-TO-15-SIM	10/11/24 09:33	10/14/24 21:21	BEP	MS-A2	10	B198806	EPA TO-15

DCN = Data Continuation Number

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2	416404-06	Client Sampl	e Name:	WB06-1H	, 10/9/2024	11:42:00AM, Eliz	zabeth Hwan	g/Olivia Hogan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		1.4	ug/m3	0.050	0.0032	EPA-TO-15-SIM	ND	Quais	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.49	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.23	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		0.10	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	1
Dichlorodifluoromethane		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.093	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		1.2	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.66	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.23	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		2.6	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluor	oethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		2.2	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.74	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		2.9	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Sur	rogate)	108	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	108	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	89.1	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	D : 2416404-06	Client San	nple Name: V	VB06-1H, 10	/9/2024 11:42:0	OAM, Elizabe	th Hwang/Ol	B198723 EPA TO-15		
		-	Run				QC			
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 19:03	BEP	MS-A2	1	B198723	EPA TO-15		
2	EPA-TO-15-SIM	10/11/24 09:33	10/14/24 22:01	BEP	MS-A2	10	B198806	EPA TO-15		

DCN = Data Continuation Number

Page 23 **461** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416404-08	Client Sample	e Name:	WB08-1H	, 10/9/2024	12:11:00PM, Eliz	zabeth Hwan	g/Olivia Hogan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		1.4	ug/m3	0.050	0.0032	EPA-TO-15-SIM	ND		1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.21	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		0.086	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	1
Dichlorodifluoromethane	•	2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.088	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene)	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		1.1	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.56	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.16	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		2.6	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.3	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-triflu	ioroethane	0.53	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		1.7	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.62	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		2.3	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (S	urrogate)	108	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (S	urrogate)	108	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (S	urrogate)	82.7	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Page 24 **462** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	: 2416404-08	Client San	Client Sample Name: WB08-1H, 10/9/2024 12:11:00PM, Elizabeth Hw					
		-	Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 19:49	BEP	MS-A2	1	B198723	EPA TO-15
2	EPA-TO-15-SIM	10/11/24 09:33	10/14/24 22:43	BEP	MS-A2	10	B198806	EPA TO-15

DCN = Data Continuation Number

Page 25 **463** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2	416404-09	Client Sampl	e Name:	WB09-1H	, 10/9/2024	12:24:00PM, Eliz	zabeth Hwar	ng/Olivia Hogan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		1.3	ug/m3	0.050	0.0032	EPA-TO-15-SIM	ND	ωμαισ	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.22	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		0.093	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	1
Dichlorodifluoromethane		2.4	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.086	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		1.0	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.72	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.34	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		2.7	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.3	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluor	oethane	0.53	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		2.4	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.90	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		3.3	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Suri	rogate)	109	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Suri	rogate)	109	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	93.3	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2416404-09		Client San	nple Name: V	VB09-1H, 10	10/9/2024 12:24:00PM, Elizabeth Hwang/Olivia Hogan				
		-	Run				QC		
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 20:35	BEP	MS-A2	1	B198723	EPA TO-15	
2	EPA-TO-15-SIM	10/11/24 09:33	10/14/24 23:22	BEP	MS-A2	10	B198806	EPA TO-15	

DCN = Data Continuation Number

Page 27 **465** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2416404-10		Client Sample Name:		WB10-1H, 10/9/2024		12:20:00PM, Elizabeth Hwang/Olivia Hogan				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN	
Benzene		1.8	ug/m3	0.50	0.032	EPA-TO-15-SIM	ND	Quais	1	
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		2	
Carbon tetrachloride		0.51	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		2	
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		2	
Chloroform		0.22	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		2	
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		2	
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		2	
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		2	
1,4-Dichlorobenzene		0.10	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	2	
Dichlorodifluoromethane		2.4	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		2	
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		2	
1,2-Dichloroethane		0.089	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	2	
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		2	
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2	
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		2	
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		2	
1,1-Difluoroethane		1.1	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	2	
Ethylbenzene		0.61	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		2	
Naphthalene		0.25	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		2	
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		2	
Toluene		7.2	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		1	
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2	
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2	
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		2	
Trichlorofluoromethane		1.3	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		2	
1,1,2-Trichloro-1,2,2-trifluor	oethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		2	
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		2	
p- & m-Xylenes		1.9	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		2	
o-Xylene		0.64	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2	
Total Xylenes		2.5	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		2	
4-Bromofluorobenzene (Surrogate) 93.0		%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			1		
4-Bromofluorobenzene (Surr	ogate)	109	%	50 - 150 (LCL - UCL)		EPA-TO-15-SIM			2	
4-Bromofluorobenzene (Suri	ogate)	109	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			2	

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 2416404-10 Cli			nple Name: V	VB10-1H, 10	9/2024 12:20:0	24 12:20:00PM, Elizabeth Hwang/Olivia Hogan			
		-	Run				QC		
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-TO-15-SIM	10/11/24 09:33	10/15/24 00:03	BEP	MS-A2	10	B198806	EPA TO-15	
2	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 21:21	BEP	MS-A2	1	B198723	EPA TO-15	

DCN = Data Continuation Number

Page 29 **467** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none]
Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2416404-11		Client Sample Name:		WB11-1H, 10/9/2024		12:51:00PM, Elizabeth Hwang/Olivia Hogan				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN	
Benzene		1.8	ug/m3	0.50	0.032	EPA-TO-15-SIM	ND	Q uai3	1	
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		2	
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		2	
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		2	
Chloroform		0.19	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		2	
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		2	
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		2	
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		2	
1,4-Dichlorobenzene		0.11	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	2	
Dichlorodifluoromethane		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		2	
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		2	
1,2-Dichloroethane		0.10	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND		2	
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		2	
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2	
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		2	
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		2	
1,1-Difluoroethane		0.89	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	2	
Ethylbenzene		0.67	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		2	
Naphthalene		0.31	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		2	
Tetrachloroethene		0.077	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND	J	2	
Toluene		2.8	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		1	
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2	
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2	
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		2	
Trichlorofluoromethane		1.3	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		2	
1,1,2-Trichloro-1,2,2-trifluo	roethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		2	
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		2	
p- & m-Xylenes		2.1	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		2	
o-Xylene		0.75	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2	
Total Xylenes		2.8	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		2	
4-Bromofluorobenzene (Sur	Bromofluorobenzene (Surrogate) 95.3 %		%	50 - 150 (LCL - UCL)		EPA-TO-15-SIM			1	
4-Bromofluorobenzene (Sur	rogate)	115	%	50 - 150 (LCL - UCL)		EPA-TO-15-SIM			2	
4-Bromofluorobenzene (Sur	rogate)	115	%	50 - 150 (LC	CL - UCL)	EPA-TO-15-SIM			2	

Report ID: 1001550739 4100 Atias Court Bakerstield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none]
Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D : 2416404-11	Client San	nple Name: V	VB11-1H, 10/	9/2024 12:51:00	2024 12:51:00PM, Elizabeth Hwang/Olivia Hogan QC Instrument Dilution Batch ID				
	Run QC									
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-TO-15-SIM	10/11/24 09:33	10/15/24 00:42	BEP	MS-A2	10	B198806	EPA TO-15		
2	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 22:08	BEP	MS-A2	1	B198723	EPA TO-15		

DCN = Data Continuation Number

Report ID: 1001550739 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 31 469

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	116404-12	Client Sample Name:			, 10/9/2024	12:58:00PM, Eliz	zabeth Hwan	ıg/Olivia Hogan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		1.7	ug/m3	0.50	0.032	EPA-TO-15-SIM	ND	Q uai3	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		2
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		2
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		2
Chloroform		0.20	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		2
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		2
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		2
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		2
1,4-Dichlorobenzene		0.085	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	2
Dichlorodifluoromethane		2.4	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		2
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		2
1,2-Dichloroethane		0.10	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND		2
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		2
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		2
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		2
1,1-Difluoroethane		1.7	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	2
Ethylbenzene		0.80	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		2
Naphthalene		0.30	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		2
Tetrachloroethene		0.072	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND	J	2
Toluene		3.0	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		2
Trichlorofluoromethane		1.3	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		2
1,1,2-Trichloro-1,2,2-trifluor	oethane	0.53	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		2
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		2
p- & m-Xylenes		2.6	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		2
o-Xylene		0.92	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2
Total Xylenes		3.5	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		2
4-Bromofluorobenzene (Surr	ogate)	94.1	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surr	ogate)	107	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2
4-Bromofluorobenzene (Surr	ogate)	107	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Page 32 **470** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	2416404-12	Client San	nple Name: V	VB12-1H, 10	eth Hwang/O	livia Hogan		
		-	Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	10/11/24 09:33	10/15/24 01:22	BEP	MS-A2	10	B198806	EPA TO-15
2	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 22:54	BEP	MS-A2	1	B198723	EPA TO-15

DCN = Data Continuation Number

Page 33 **471** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	116404-13	Client Sample Name:			, 10/9/2024	10:09:00AM, Eliz	zabeth Hwan		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		1.9	ug/m3	0.50	0.032	EPA-TO-15-SIM	ND	Quais	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		2
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		2
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		2
Chloroform		0.22	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		2
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		2
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		2
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		2
1,4-Dichlorobenzene		0.093	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	2
Dichlorodifluoromethane		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		2
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		2
1,2-Dichloroethane		0.11	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND		2
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		2
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		2
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		2
1,1-Difluoroethane		0.98	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	2
Ethylbenzene		0.57	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		2
Naphthalene		0.24	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		2
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		2
Toluene		2.9	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		2
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		2
1,1,2-Trichloro-1,2,2-trifluor	oethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		2
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		2
p- & m-Xylenes		1.9	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		2
o-Xylene		0.65	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2
Total Xylenes		2.6	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		2
4-Bromofluorobenzene (Surr	ogate)	84.6	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surr	ogate)	111	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2
4-Bromofluorobenzene (Suri	ogate)	111	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample I	D : 2416404-13	Client San	nple Name: V	VB13-1H, 10	/9/2024 10:09:0				
	Run QC								
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-TO-15-SIM	10/11/24 09:33	10/15/24 02:04	BEP	MS-A2	10	B198806	EPA TO-15	
2	EPA-TO-15-SIM	10/11/24 09:33	10/11/24 23:40	BEP	MS-A2	1	B198723	EPA TO-15	

DCN = Data Continuation Number

Page 35 **473** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2	416404-14	Client Sample Name:			, 10/9/2024	10:19:00AM, Eli	zabeth Hwan		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		1.9	ug/m3	0.50	0.032	EPA-TO-15-SIM	ND	Q uai3	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		2
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		2
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		2
Chloroform		0.24	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		2
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		2
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		2
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		2
1,4-Dichlorobenzene		0.097	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	2
Dichlorodifluoromethane		2.3	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		2
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		2
1,2-Dichloroethane		0.11	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND		2
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		2
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		2
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		2
1,1-Difluoroethane		0.99	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	2
Ethylbenzene		0.58	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		2
Naphthalene		0.23	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		2
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		2
Toluene		3.2	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		2
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		2
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		2
1,1,2-Trichloro-1,2,2-trifluor	oethane	0.52	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		2
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		2
p- & m-Xylenes		2.0	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		2
o-Xylene		0.68	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		2
Total Xylenes		2.7	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		2
4-Bromofluorobenzene (Suri	rogate)	85.8	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Suri	ogate)	109	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2
4-Bromofluorobenzene (Sur	ogate)	109	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample I	D : 2416404-14	Client San	nple Name: V	VB14-1H, 10	/9/2024 10:19:0	0AM, Elizabe	10 B198806 EPA TO-15		
		-	Run				QC		
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-TO-15-SIM	10/11/24 09:33	10/15/24 02:45	BEP	MS-A2	10	B198806	EPA TO-15	
2	EPA-TO-15-SIM	10/11/24 09:33	10/12/24 00:27	BEP	MS-A2	1	B198723	EPA TO-15	

DCN = Data Continuation Number

Page 37 **475** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2416404-15	Client Sampl	e Name:	WB17-1H	, 10/9/2024	2:37:00PM, Eliz	abeth Hwan	g/Olivia Hogan	
O-matition 1			11. 24	PQL	MDL	8.8 - 41 1	MB	Lab	D 211
Constituent Benzene		Result 0.88	Units ug/m3	0.050	0.0032	Method EPA-TO-15-SIM	Bias ND	Quals	DCN 1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		 1
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		<u>·</u> 1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		<u>.</u> 1
Chloroform		0.19	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		 1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		0.080	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	1
Dichlorodifluoromethan	e	2.4	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.070	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropen	e	ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.67	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.61	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.18	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		0.074	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND	J	1
Toluene		1.7	ug/m3	0.10	0.0062	EPA-TO-15-SIM	ND		1
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.3	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifl	uoroethane	0.53	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		2.0	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.67	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		2.6	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surrogate)	107	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surrogate)	107	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

Page 38 **476** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	: 2416404-15	Client Sam	ple Name:	WB17-1H, 10/	7-1H, 10/9/2024 2:37:00PM, Elizabeth Hwang/Olivia Hogan QC nalyst Instrument Dilution Batch ID				
DCN	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution			
1	EPA-TO-15-SIM	10/11/24 09:33	10/12/24 01:13	BEP	MS-A2	1	B198723	EPA TO-15	

DCN = Data Continuation Number

Page 39 **477** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2	416404-16	Client Sampl	e Name:	WB18-1H	, 10/9/2024	2:56:00PM, Eliz	abeth Hwan	g/Olivia Hogan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		1.1	ug/m3	0.050	0.0032	EPA-TO-15-SIM	ND	Quais	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.20	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		0.092	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	1
Dichlorodifluoromethane		2.4	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.073	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND	J	1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		0.80	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.52	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.13	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND	J	1
Tetrachloroethene		0.12	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		2.5	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.3	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluoi	oethane	0.53	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		1.5	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.56	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		2.0	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Sur	rogate)	106	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	106	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Sur	rogate)	86.3	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Page 40 **478** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D : 2416404-16	Client San	nple Name: V	VB18-1H, 10	th Hwang/Oli	via Hogan		
		-	Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	10/14/24 09:06	10/14/24 19:16	BEP	MS-A2	1	B198806	EPA TO-15
2	EPA-TO-15-SIM	10/14/24 09:06	10/15/24 03:24	BEP	MS-A2	10	B198806	EPA TO-15

DCN = Data Continuation Number

Page 41 **479** Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	116404-17	Client Sampl	e Name:	WB19-1H	, 10/9/2024	10:54:00AM, Eli	zabeth Hwar	ng/Olivia Hogan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		1.6	ug/m3	0.050	0.0032	EPA-TO-15-SIM	ND	Quais	1
Benzyl chloride		ND	ug/m3	0.50	0.0052	EPA-TO-15-SIM	ND		1
Carbon tetrachloride		0.50	ug/m3	0.20	0.0063	EPA-TO-15-SIM	ND		1
Chlorobenzene		ND	ug/m3	0.10	0.0079	EPA-TO-15-SIM	ND		1
Chloroform		0.23	ug/m3	0.050	0.0058	EPA-TO-15-SIM	ND		1
1,2-Dibromoethane		ND	ug/m3	0.20	0.014	EPA-TO-15-SIM	ND		1
1,2-Dichlorobenzene		ND	ug/m3	0.20	0.011	EPA-TO-15-SIM	ND		1
1,3-Dichlorobenzene		ND	ug/m3	0.20	0.013	EPA-TO-15-SIM	ND		1
1,4-Dichlorobenzene		0.091	ug/m3	0.20	0.016	EPA-TO-15-SIM	ND	J	1
Dichlorodifluoromethane		2.4	ug/m3	0.050	0.0052	EPA-TO-15-SIM	ND		1
1,1-Dichloroethane		ND	ug/m3	0.050	0.0041	EPA-TO-15-SIM	ND		1
1,2-Dichloroethane		0.11	ug/m3	0.10	0.0046	EPA-TO-15-SIM	ND		1
1,1-Dichloroethene		ND	ug/m3	0.050	0.0078	EPA-TO-15-SIM	ND		1
cis-1,2-Dichloroethene		ND	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
trans-1,2-Dichloroethene		ND	ug/m3	0.050	0.0075	EPA-TO-15-SIM	ND		1
trans-1,3-Dichloropropene		ND	ug/m3	0.050	0.013	EPA-TO-15-SIM	ND		1
1,1-Difluoroethane		1.1	ug/m3	5.0	0.0027	EPA-TO-15-SIM	ND	J	1
Ethylbenzene		0.69	ug/m3	0.050	0.017	EPA-TO-15-SIM	ND		1
Naphthalene		0.77	ug/m3	0.20	0.020	EPA-TO-15-SIM	ND		1
Tetrachloroethene		ND	ug/m3	0.10	0.011	EPA-TO-15-SIM	ND		1
Toluene		2.8	ug/m3	1.0	0.062	EPA-TO-15-SIM	ND		2
1,1,1-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
1,1,2-Trichloroethane		ND	ug/m3	0.10	0.0055	EPA-TO-15-SIM	ND		1
Trichloroethene		ND	ug/m3	0.10	0.0095	EPA-TO-15-SIM	ND		1
Trichlorofluoromethane		1.2	ug/m3	0.050	0.0057	EPA-TO-15-SIM	ND		1
1,1,2-Trichloro-1,2,2-trifluor	oethane	0.54	ug/m3	0.10	0.0078	EPA-TO-15-SIM	ND		1
Vinyl chloride		ND	ug/m3	0.020	0.0046	EPA-TO-15-SIM	ND		1
p- & m-Xylenes		2.4	ug/m3	0.050	0.0082	EPA-TO-15-SIM	ND		1
o-Xylene		0.78	ug/m3	0.050	0.0044	EPA-TO-15-SIM	ND		1
Total Xylenes		3.1	ug/m3	0.10	0.013	EPA-TO-15-SIM	ND		1
4-Bromofluorobenzene (Surr	ogate)	105	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Surr	ogate)	105	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1
4-Bromofluorobenzene (Suri	ogate)	96.6	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			2

Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D : 2416404-17	Client San	nple Name: V	/9/2024 10:54:0	/2024 10:54:00AM, Elizabeth Hwang/Olivia Hogan				
		-	Run				QC		
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-TO-15-SIM	10/14/24 09:06	10/14/24 20:02	BEP	MS-A2	1	B198806	EPA TO-15	
2	EPA-TO-15-SIM	10/14/24 09:06	10/15/24 09:56	BEP	MS-A2	10	B198806	EPA TO-15	

DCN = Data Continuation Number

Page 43 **481** Report ID: 1001550739

Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none]
Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	Run #
QC Batch ID: B198723							
Benzene	B198723-BLK1	ND	ug/m3	0.050	0.0032		1
Benzyl chloride	B198723-BLK1	ND	ug/m3	0.50	0.0052		1
Carbon tetrachloride	B198723-BLK1	ND	ug/m3	0.20	0.0063		1
Chlorobenzene	B198723-BLK1	ND	ug/m3	0.10	0.0079		1
Chloroform	B198723-BLK1	ND	ug/m3	0.050	0.0058		1
1,2-Dibromoethane	B198723-BLK1	ND	ug/m3	0.20	0.014		1
1,2-Dichlorobenzene	B198723-BLK1	ND	ug/m3	0.20	0.011		1
1,3-Dichlorobenzene	B198723-BLK1	ND	ug/m3	0.20	0.013		1
1,4-Dichlorobenzene	B198723-BLK1	ND	ug/m3	0.20	0.016		1
	B198723-BLK1	ND	ug/m3	0.050	0.0052		1
1,1-Dichloroethane	B198723-BLK1	ND	ug/m3	0.050	0.0041		1
1,2-Dichloroethane	B198723-BLK1	ND	ug/m3	0.10	0.0046		1
1,1-Dichloroethene	B198723-BLK1	ND	ug/m3	0.050	0.0078		1
cis-1,2-Dichloroethene	B198723-BLK1	ND	ug/m3	0.050	0.0044		1
trans-1,2-Dichloroethene	B198723-BLK1	ND	ug/m3	0.050	0.0075		1
trans-1,3-Dichloropropene	B198723-BLK1	ND	ug/m3	0.050	0.013		1
1,1-Difluoroethane	B198723-BLK1	ND	ug/m3	5.0	0.0027		1
Ethylbenzene	B198723-BLK1	ND	ug/m3	0.050	0.017		1
- Naphthalene	B198723-BLK1	ND	ug/m3	0.20	0.020		1
Tetrachloroethene	B198723-BLK1	ND	ug/m3	0.10	0.011		1
Toluene	B198723-BLK1	ND	ug/m3	0.10	0.0062		1
1,1,1-Trichloroethane	B198723-BLK1	ND	ug/m3	0.10	0.0055		1
1,1,2-Trichloroethane	B198723-BLK1	ND	ug/m3	0.10	0.0055		1
Trichloroethene	B198723-BLK1	ND	ug/m3	0.10	0.0095		1
Trichlorofluoromethane	B198723-BLK1	ND	ug/m3	0.050	0.0057		1
1,1,2-Trichloro-1,2,2-trifluoroethane	B198723-BLK1	ND	ug/m3	0.10	0.0078		1
Vinyl chloride	B198723-BLK1	ND	ug/m3	0.020	0.0046		1
p- & m-Xylenes	B198723-BLK1	ND	ug/m3	0.050	0.0082		1
o-Xylene	B198723-BLK1	ND	ug/m3	0.050	0.0044		1
Total Xylenes	B198723-BLK1	ND	ug/m3	0.10	0.013		1
4-Bromofluorobenzene (Surrogate)	B198723-BLK1	92.1	%	50 - 15	0 (LCL - UCL)		1
QC Batch ID: B198806							
Benzene	B198806-BLK1	ND	ug/m3	0.050	0.0032		2

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none]
Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	Run #
QC Batch ID: B198806							
Benzyl chloride	B198806-BLK1	ND	ug/m3	0.50	0.0052		2
Carbon tetrachloride	B198806-BLK1	ND	ug/m3	0.20	0.0063		2
Chlorobenzene	B198806-BLK1	ND	ug/m3	0.10	0.0079		2
- Chloroform	B198806-BLK1	ND	ug/m3	0.050	0.0058		2
1,2-Dibromoethane	B198806-BLK1	ND	ug/m3	0.20	0.014		2
1,2-Dichlorobenzene	B198806-BLK1	ND	ug/m3	0.20	0.011		2
1,3-Dichlorobenzene	B198806-BLK1	ND	ug/m3	0.20	0.013		2
1,4-Dichlorobenzene	B198806-BLK1	ND	ug/m3	0.20	0.016		2
	B198806-BLK1	ND	ug/m3	0.050	0.0052		2
1,1-Dichloroethane	B198806-BLK1	ND	ug/m3	0.050	0.0041		2
1,2-Dichloroethane	B198806-BLK1	ND	ug/m3	0.10	0.0046		2
1,1-Dichloroethene	B198806-BLK1	ND	ug/m3	0.050	0.0078		2
cis-1,2-Dichloroethene	B198806-BLK1	ND	ug/m3	0.050	0.0044		2
trans-1,2-Dichloroethene	B198806-BLK1	ND	ug/m3	0.050	0.0075		2
trans-1,3-Dichloropropene	B198806-BLK1	ND	ug/m3	0.050	0.013		2
1,1-Difluoroethane	B198806-BLK1	ND	ug/m3	5.0	0.0027		2
Ethylbenzene	B198806-BLK1	ND	ug/m3	0.050	0.017		2
- Naphthalene	B198806-BLK1	ND	ug/m3	0.20	0.020		2
Tetrachloroethene	B198806-BLK1	ND	ug/m3	0.10	0.011		2
Toluene	B198806-BLK1	ND	ug/m3	0.10	0.0062		2
1,1,1-Trichloroethane	B198806-BLK1	ND	ug/m3	0.10	0.0055		2
1,1,2-Trichloroethane	B198806-BLK1	ND	ug/m3	0.10	0.0055		2
Trichloroethene	B198806-BLK1	ND	ug/m3	0.10	0.0095		2
Trichlorofluoromethane	B198806-BLK1	ND	ug/m3	0.050	0.0057		2
1,1,2-Trichloro-1,2,2-trifluoroethane	B198806-BLK1	ND	ug/m3	0.10	0.0078		2
Vinyl chloride	B198806-BLK1	ND	ug/m3	0.020	0.0046		2
p- & m-Xylenes	B198806-BLK1	ND	ug/m3	0.050	0.0082		2
o-Xylene	B198806-BLK1	ND	ug/m3	0.050	0.0044		2
Total Xylenes	B198806-BLK1	ND	ug/m3	0.10	0.013		2
4-Bromofluorobenzene (Surrogate)	B198806-BLK1	95.4	%	50 - 15	0 (LCL - UCL)		2

Report ID: 1001550739 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Page 45 **483**

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

					Run			
Run#	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution
1	B198723-BLK1	РВ	EPA-TO-15-SIM	10/11/24	10/11/24 14:23	BEP	MS-A2	1
2	B198806-BLK1	PB	EPA-TO-15-SIM	10/14/24	10/14/24 16:11	BEP	MS-A2	1

Page 46 **484** Report ID: 1001550739

Report ID: 1001550739

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none]
Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

								Control I	<u>_imits</u>		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	BBD	Lab Quals	Run #
Constituent	QC Sample ID	туре	Result	Level	Ullits	Recovery	KFD	Recovery	KFD	Quais	Ruii #
QC Batch ID: B198723											
Benzene	B198723-BS1	LCS	0.33316	0.31948	ug/m3	104		70 - 130			1
	B198723-BSD1	LCSD	0.34254	0.31948	ug/m3	107	2.8	70 - 130	25		2
Benzyl chloride	B198723-BS1	LCS	0.57789	0.51772	ug/m3	112		70 - 130			1
	B198723-BSD1	LCSD	0.49353	0.51772	ug/m3	95.3	15.7	70 - 130	25	J	2
Carbon tetrachloride	B198723-BS1	LCS	0.72246	0.62913	ug/m3	115		70 - 130			1
	B198723-BSD1	LCSD	0.70909	0.62913	ug/m3	113	1.9	70 - 130	25		2
Chlorobenzene	B198723-BS1	LCS	0.53771	0.46036	ug/m3	117		70 - 130			1
	B198723-BSD1	LCSD	0.51817	0.46036	ug/m3	113	3.7	70 - 130	25		2
Chloroform	B198723-BS1	LCS	0.56905	0.48825	ug/m3	117		70 - 130			1
	B198723-BSD1	LCSD	0.56923	0.48825	ug/m3	117	0.0	70 - 130	25		2
1,2-Dibromoethane	B198723-BS1	LCS	0.91575	0.76835	ug/m3	119		70 - 130			1
	B198723-BSD1	LCSD	0.87062	0.76835	ug/m3	113	5.1	70 - 130	25		2
1,2-Dichlorobenzene	B198723-BS1	LCS	0.67972	0.60124	ug/m3	113		70 - 130			1
	B198723-BSD1	LCSD	0.64027	0.60124	ug/m3	106	6.0	70 - 130	25		2
1,3-Dichlorobenzene	B198723-BS1	LCS	0.69255	0.60124	ug/m3	115		70 - 130			1
,,,	B198723-BSD1	LCSD	0.63229	0.60124	ug/m3	105	9.1	70 - 130	25		2
1,4-Dichlorobenzene	B198723-BS1	LCS	0.70998	0.60124	ug/m3	118		70 - 130			1
1, 1 Biomoroponzono	B198723-BSD1	LCSD	0.63415	0.60124	ug/m3	105	11.3	70 - 130	25		2
1,1-Dichloroethane	B198723-BS1	LCS	0.45441	0.40474	ug/m3	112		70 - 130			1
1, 1-Diomorocanane	B198723-BSD1	LCSD	0.45405	0.40474	ug/m3	112	0.1	70 - 130	25		2
1,2-Dichloroethane	B198723-BS1	LCS	0.47149	0.40474	ug/m3	116		70 - 130			1
1,2-Dichioroethane	B198723-BSD1	LCSD	0.47149	0.40474	ug/m3	117	0.2	70 - 130 70 - 130	25		2
1 1 Diablaraethana							0.2				
1,1-Dichloroethene	B198723-BS1 B198723-BSD1	LCS LCSD	0.42913 0.43508	0.39649 0.39649	ug/m3 ug/m3	108 110	1.4	70 - 130 70 - 130	25		1 2
· 40 Pi II - #							1.7		25		
cis-1,2-Dichloroethene	B198723-BS1	LCS	0.42444	0.39649 0.39649	ug/m3	107	0.7	70 - 130 70 - 130	25		1
	B198723-BSD1	LCSD	0.42756		ug/m3	108	0.7		25		2
Tetrachloroethene	B198723-BS1	LCS	0.80707	0.67825	ug/m3	119	0.7	70 - 130	05		1
	B198723-BSD1	LCSD	0.80118	0.67825	ug/m3	118	0.7	70 - 130	25		2
Toluene	B198723-BS1	LCS	0.40311	0.37684	ug/m3	107		70 - 130			1
	B198723-BSD1	LCSD	0.39207	0.37684	ug/m3	104	2.8	70 - 130	25		2
1,1,1-Trichloroethane	B198723-BS1	LCS	0.63396	0.54562	ug/m3	116		70 - 130			1
	B198723-BSD1	LCSD	0.63793	0.54562	ug/m3	117	0.6	70 - 130	25		2
1,1,2-Trichloroethane	B198723-BS1	LCS	0.66127	0.54562	ug/m3	121		70 - 130			1
	B198723-BSD1	LCSD	0.64257	0.54562	ug/m3	118	2.9	70 - 130	25		2
Trichloroethene	B198723-BS1	LCS	0.62429	0.53737	ug/m3	116		70 - 130	-		1
	B198723-BSD1	LCSD	0.61305	0.53737	ug/m3	114	1.8	70 - 130	25		2

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none]
Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

								Control I	<u>_imits</u>	_	
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	BbD	Lab Quals	Run #
		1 y pe	resuit	LG V G I	Units	Necovery	INF D	Recovery	וארט	QUAIS	ixuii #
QC Batch ID: B198723											
Vinyl chloride	B198723-BS1	LCS	0.29600	0.25562	ug/m3	116	0.0	70 - 130	05		1
	B198723-BSD1	LCSD	0.29587	0.25562	ug/m3	116	0.0	70 - 130	25		2
p- & m-Xylenes	B198723-BS1	LCS	0.93244	0.86843	ug/m3	107		70 - 130			1
	B198723-BSD1	LCSD	0.94491	0.86843	ug/m3	109	1.3	70 - 130	25		2
o-Xylene	B198723-BS1	LCS	0.47821	0.43421	ug/m3	110		70 - 130			1
	B198723-BSD1	LCSD	0.48047	0.43421	ug/m3	111	0.5	70 - 130	25		2
Total Xylenes	B198723-BS1	LCS	1.4107	1.3026	ug/m3	108		70 - 130			1
	B198723-BSD1	LCSD	1.4254	1.3026	ug/m3	109	1.0	70 - 130	25		2
4-Bromofluorobenzene (Surrogate)	B198723-BS1	LCS	3.75	3.58	ug/m3	105		50 - 150			1
	B198723-BSD1	LCSD	3.47	3.58	ug/m3	96.9	8.0	50 - 150			2
QC Batch ID: B198806											
Benzene	_ B198806-BS1	LCS	0.35204	0.31948	ug/m3	110		70 - 130			3
20.120.10	B198806-BSD1	LCSD	0.35688	0.31948	ug/m3	112	1.4	70 - 130	25		4
Benzyl chloride	B198806-BS1	LCS	0.60417	0.51772	ug/m3	117		70 - 130			3
Benzyi Gilonde	B198806-BSD1	LCSD	0.59163	0.51772	ug/m3	114	2.1	70 - 130	25		4
Carbon tetrachloride	B198806-BS1		0.70353	0.62913	ug/m3	112		70 - 130			3
Carbon tetracinoride	B198806-BSD1	LCS LCSD	0.70333	0.62913	ug/m3	114	2.3	70 - 130 70 - 130	25		4
OLL							2.0		20		
Chlorobenzene	B198806-BS1 B198806-BSD1	LCS	0.52251 0.54190	0.46036 0.46036	ug/m3 ug/m3	114 118	3.6	70 - 130 70 - 130	25		3 4
		LCSD					3.0		25		
Chloroform	B198806-BS1	LCS	0.57621	0.48825	ug/m3	118		70 - 130	0.5		3
	B198806-BSD1	LCSD	0.58433	0.48825	ug/m3	120	1.4	70 - 130	25		4
1,2-Dibromoethane	B198806-BS1	LCS	0.89439	0.76835	ug/m3	116		70 - 130			3
	B198806-BSD1	LCSD	0.91096	0.76835	ug/m3	119	1.8	70 - 130	25		4
1,2-Dichlorobenzene	B198806-BS1	LCS	0.70758	0.60124	ug/m3	118		70 - 130			3
	B198806-BSD1	LCSD	0.69842	0.60124	ug/m3	116	1.3	70 - 130	25		4
1,3-Dichlorobenzene	B198806-BS1	LCS	0.72037	0.60124	ug/m3	120		70 - 130			3
	B198806-BSD1	LCSD	0.71854	0.60124	ug/m3	120	0.3	70 - 130	25		4
1,4-Dichlorobenzene	B198806-BS1	LCS	0.74288	0.60124	ug/m3	124		70 - 130			3
	B198806-BSD1	LCSD	0.74449	0.60124	ug/m3	124	0.2	70 - 130	25		4
1,1-Dichloroethane	B198806-BS1	LCS	0.46873	0.40474	ug/m3	116		70 - 130			3
	B198806-BSD1	LCSD	0.46911	0.40474	ug/m3	116	0.1	70 - 130	25		4
1,2-Dichloroethane	B198806-BS1	LCS	0.47500	0.40474	ug/m3	117		70 - 130			3
•	B198806-BSD1	LCSD	0.48588	0.40474	ug/m3	120	2.3	70 - 130	25		4
1,1-Dichloroethene	B198806-BS1	LCS	0.44522	0.39649	ug/m3	112		70 - 130			3
.,	B198806-BSD1	LCSD	0.46220	0.39649	ug/m3	117	3.7	70 - 130	25		4
cis-1,2-Dichloroethene	B198806-BS1		0.44975	0.39649	ug/m3	113	- * *	70 - 130			3
613-1,2 - DIGHOLOGUIGHG	B198806-BSD1	LCS LCSD	0.44975	0.39649	ug/m3	112	1.1	70 - 130 70 - 130	25		3 4
	2100000-0001	LOGD	V. 1 177 1	0.00040	49/1110	112		70 100			

Report ID: 1001550739 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Reported: 11/11/2024 15:09

Project: Walnut Bluff

Project Number: [none]
Project Manager: Yola Byram

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

QC Sample ID	T		Spike						Control Limits		
QC Sample ID	T		Opine		Percent		Percent		Lab		
	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	Run #	
B198806-BS1	LCS	0.77710	0.67825	ug/m3	115		70 - 130			3	
B198806-BSD1	LCSD	0.80833	0.67825	ug/m3	119	3.9	70 - 130	25		4	
B198806-BS1	LCS	0.40225	0.37684	ug/m3	107		70 - 130			3	
B198806-BSD1	LCSD	0.42078	0.37684	ug/m3	112	4.5	70 - 130	25		4	
B198806-BS1	LCS	0.64072	0.54562	ug/m3	117		70 - 130			3	
B198806-BSD1	LCSD	0.65835	0.54562	ug/m3	121	2.7	70 - 130	25		4	
B198806-BS1	LCS	0.62359	0.54562	ug/m3	114		70 - 130			3	
B198806-BSD1	LCSD	0.64832	0.54562	ug/m3	119	3.9	70 - 130	25		4	
B198806-BS1	LCS	0.60167	0.53737	ug/m3	112		70 - 130			3	
B198806-BSD1	LCSD	0.62790	0.53737	ug/m3	117	4.3	70 - 130	25		4	
B198806-BS1	LCS	0.29952	0.25562	ug/m3	117		70 - 130			3	
B198806-BSD1	LCSD	0.30319	0.25562	ug/m3	119	1.2	70 - 130	25		4	
B198806-BS1	LCS	0.96885	0.86843	ug/m3	112		70 - 130			3	
B198806-BSD1	LCSD	0.99360	0.86843	ug/m3	114	2.5	70 - 130	25		4	
B198806-BS1	LCS	0.48972	0.43421	ug/m3	113		70 - 130			3	
B198806-BSD1	LCSD	0.50139	0.43421	ug/m3	115	2.4	70 - 130	25		4	
B198806-BS1	LCS	1.4586	1.3026	ug/m3	112		70 - 130			3	
B198806-BSD1	LCSD	1.4950	1.3026	ug/m3	115	2.5	70 - 130	25		4	
B198806-BS1	LCS	3.86	3.58	ug/m3	108		50 - 150			3	
B198806-BSD1	LCSD	3.74	3.58	ug/m3	105	3.0	50 - 150			4	
	B198806-BSD1	B198806-BSD1 LCSD B198806-BSD1 LCSD	B198806-BSD1 LCSD 0.80833 B198806-BS1 LCS 0.40225 B198806-BSD1 LCSD 0.42078 B198806-BSD1 LCSD 0.64072 B198806-BSD1 LCSD 0.65835 B198806-BSD1 LCSD 0.62359 B198806-BSD1 LCSD 0.64832 B198806-BSD1 LCSD 0.60167 B198806-BSD1 LCSD 0.62790 B198806-BSD1 LCSD 0.30319 B198806-BSD1 LCSD 0.96885 B198806-BSD1 LCSD 0.99360 B198806-BSD1 LCSD 0.50139 B198806-BSD1 LCSD 1.4586 B198806-BSD1 LCSD 1.4950 B198806-BSD1 LCSD 3.86	B198806-BSD1 LCSD 0.80833 0.67825 B198806-BS1 LCS 0.40225 0.37684 B198806-BSD1 LCSD 0.42078 0.37684 B198806-BSD1 LCS 0.64072 0.54562 B198806-BSD1 LCSD 0.65835 0.54562 B198806-BSD1 LCS 0.62359 0.54562 B198806-BSD1 LCSD 0.64832 0.54562 B198806-BSD1 LCSD 0.60167 0.53737 B198806-BSD1 LCSD 0.62790 0.53737 B198806-BSD1 LCSD 0.30319 0.25562 B198806-BSD1 LCSD 0.30319 0.25562 B198806-BSD1 LCSD 0.96885 0.86843 B198806-BSD1 LCSD 0.99360 0.86843 B198806-BSD1 LCSD 0.50139 0.43421 B198806-BSD1 LCSD 1.4586 1.3026 B198806-BSD1 LCSD 1.4950 1.3026 B198806-BSD1 LCSD 3.86 3.58 <	B198806-BSD1 LCSD 0.80833 0.67825 ug/m3 B198806-BS1 LCS 0.40225 0.37684 ug/m3 B198806-BSD1 LCSD 0.42078 0.37684 ug/m3 B198806-BSD1 LCS 0.64072 0.54562 ug/m3 B198806-BSD1 LCSD 0.65835 0.54562 ug/m3 B198806-BSD1 LCS 0.62359 0.54562 ug/m3 B198806-BSD1 LCSD 0.64832 0.54562 ug/m3 B198806-BSD1 LCS 0.60167 0.53737 ug/m3 B198806-BSD1 LCSD 0.62790 0.53737 ug/m3 B198806-BSD1 LCSD 0.30319 0.25562 ug/m3 B198806-BSD1 LCSD 0.96885 0.86843 ug/m3 B198806-BSD1 LCSD 0.99360 0.86843 ug/m3 B198806-BSD1 LCSD 0.50139 0.43421 ug/m3 B198806-BSD1 LCSD 0.50139 0.43421 ug/m3 B198806-BSD1	B198806-BSD1 LCSD 0.80833 0.67825 ug/m3 119 B198806-BS1 LCS 0.40225 0.37684 ug/m3 107 B198806-BSD1 LCSD 0.42078 0.37684 ug/m3 112 B198806-BSD1 LCS 0.64072 0.54562 ug/m3 117 B198806-BSD1 LCSD 0.65835 0.54562 ug/m3 121 B198806-BS1 LCS 0.62359 0.54562 ug/m3 114 B198806-BSD1 LCSD 0.64832 0.54562 ug/m3 119 B198806-BS1 LCS 0.60167 0.53737 ug/m3 117 B198806-BS1 LCS 0.29952 0.25562 ug/m3 117 B198806-BS1 LCS 0.96885 0.86843 ug/m3 112 B198806-BSD1 LCSD 0.99360 0.86843 ug/m3 114 B198806-BSD1 LCSD 0.50139 0.43421 ug/m3 115 B198806-BSD1 LCSD 1.	B198806-BSD1 LCSD 0.80833 0.67825 ug/m3 119 3.9 B198806-BS1 LCS 0.40225 0.37684 ug/m3 107 B198806-BSD1 LCSD 0.42078 0.37684 ug/m3 112 4.5 B198806-BSD1 LCS 0.64072 0.54562 ug/m3 117 117 B198806-BSD1 LCSD 0.65835 0.54562 ug/m3 121 2.7 B198806-BSD1 LCS 0.62359 0.54562 ug/m3 114 119 3.9 B198806-BSD1 LCSD 0.64832 0.54562 ug/m3 119 3.9 B198806-BSD1 LCSD 0.60167 0.53737 ug/m3 112 117 4.3 B198806-BSD1 LCSD 0.29952 0.25562 ug/m3 117 4.3 B198806-BSD1 LCSD 0.96885 0.86843 ug/m3 112 112 B198806-BSD1 LCSD 0.99360 0.86843 ug/m3 114	B198806-BSD1 LCSD 0.80833 0.67825 ug/m3 119 3.9 70 - 130 B198806-BS1 LCS 0.40225 0.37684 ug/m3 107 70 - 130 B198806-BSD1 LCSD 0.42078 0.37684 ug/m3 112 4.5 70 - 130 B198806-BSD1 LCS 0.64072 0.54562 ug/m3 117 70 - 130 B198806-BSD1 LCSD 0.65835 0.54562 ug/m3 121 2.7 70 - 130 B198806-BSD1 LCSD 0.62359 0.54562 ug/m3 114 70 - 130 B198806-BSD1 LCSD 0.64832 0.54562 ug/m3 119 3.9 70 - 130 B198806-BSD1 LCS 0.60167 0.53737 ug/m3 112 70 - 130 B198806-BSD1 LCSD 0.29952 0.25562 ug/m3 117 70 - 130 B198806-BSD1 LCSD 0.99360 0.86843 ug/m3 112 70 - 130 B198806-BSD1 LCS	B198806-BSD1 LCSD 0.80833 0.67825 ug/m3 119 3.9 70 - 130 25 B198806-BSD1 LCS 0.40225 0.37684 ug/m3 107 70 - 130 25 B198806-BSD1 LCSD 0.42078 0.37684 ug/m3 112 4.5 70 - 130 25 B198806-BSD1 LCS 0.64072 0.54562 ug/m3 117 70 - 130 25 B198806-BSD1 LCSD 0.65835 0.54562 ug/m3 121 2.7 70 - 130 25 B198806-BSD1 LCSD 0.62359 0.54562 ug/m3 114 70 - 130 25 B198806-BSD1 LCSD 0.64832 0.54562 ug/m3 119 3.9 70 - 130 25 B198806-BSD1 LCSD 0.62790 0.53737 ug/m3 117 4.3 70 - 130 25 B198806-BSD1 LCSD 0.30319 0.25562 ug/m3 117 70 - 130 25 B198806-BSD1	B198806-BSD1 LCSD 0.80833 0.67825 ug/m3 119 3.9 70 - 130 25 B198806-BSD1 LCS 0.40225 0.37684 ug/m3 107 70 - 130 25 B198806-BSD1 LCSD 0.42078 0.37684 ug/m3 112 4.5 70 - 130 25 B198806-BSD1 LCS 0.64072 0.54562 ug/m3 117 70 - 130 25 B198806-BSD1 LCSD 0.65835 0.54562 ug/m3 121 2.7 70 - 130 25 B198806-BSD1 LCSD 0.62359 0.54562 ug/m3 114 70 - 130 25 B198806-BSD1 LCSD 0.64832 0.54562 ug/m3 119 3.9 70 - 130 25 B198806-BSD1 LCSD 0.62790 0.53737 ug/m3 117 4.3 70 - 130 25 B198806-BSD1 LCSD 0.30319 0.25562 ug/m3 117 70 - 130 25 B198806-BSD1	

					Run			
Run#	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution
1	B198723-BS1	LCS	EPA-TO-15-SIM	10/11/24	10/11/24 12:53	BEP	MS-A2	1
2	B198723-BSD1	LCSD	EPA-TO-15-SIM	10/11/24	10/11/24 13:37	BEP	MS-A2	1
3	B198806-BS1	LCS	EPA-TO-15-SIM	10/14/24	10/14/24 14:40	BEP	MS-A2	1
4	B198806-BSD1	LCSD	EPA-TO-15-SIM	10/14/24	10/14/24 16:54	BEP	MS-A2	1

Report ID: 1001550739 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Reported: 11/11/2024 15:09 Project: Walnut Bluff

Project Number: [none] Project Manager: Yola Byram

Notes And Definitions

Estimated Value (CLP Flag)

MDL Method Detection Limit ND Analyte Not Detected PQL Practical Quantitation Limit

Page 50 **488** Report ID: 1001550739

Appendix H

PID Calibration Certificates

Photo-Ionization Detector Calibration Certificate

		Lot #	Expiration	
Isobutylene Gas		22-8650	11/29/2026]
ID. 107 on 1602				
ID: 107 or 1693 Cal Standard			Reading	Acceptable Range
				-
10 ppm ▼			10	(98 - 102)
			Pump Flow mL/min	Acceptable Range
			481	(300+) ▼
			Response Factor	
			1.0	
			Bump Test Reading	Acceptable Range
			9.94	9.0 - 11.0
			l with Rental Package	Confirmed
Alkaline Pack Batt			crewdriver Included	Yes
	(4 X AA)	A Batteries)		
Model	ppbRae 3000	▼		
Lamp	10.6 eV ▼			
S/N	594-000293			
Barcode	U55428X	•		
Order#	561931			
		Calibrated By	Christian Pinto	
	Date	e of Calibration	9/25/2024	Rev 4.0 6/7/24
		. forms to many fort	urer's specifications. Please re	-

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

Photo-Ionization Detector Calibration Certificate

		Lot #	Expiration	_
Isobutylene Gas	L	22-8650	11/29/2026]
ID: 107 or 1693				
Cal Standard			Reading	Acceptable Range
10 ppm ▼			10	(98 - 102)
			Pump Flow mL/min	Acceptable Range
			523	(300+) ▼
			Response Factor	
			1.0	
			Bump Test Reading	Acceptable Range
			9.96	9.0 - 11.0
Ensure Water Tra	p (ID: 2609) and Tu	ıbing Included	l with Rental Package	Confirmed
Alkaline Pack Bat			rewdriver Included	Yes
	(4 X AA)	Batteries)		
Model	ppbRae 3000 ▼	•		
Lamp	10.6 eV ▼			
S/N	594-900569			
Barcode	U57479X			
Order#	561931			
		Calibrated By	Christian Pinto	
	Date o	of Calibration	9/25/2024	Rev 4.0 6/7/24
All calibrations			urer's specifications. Please re	-

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

Photo-Ionization Detector Calibration Certificate

	_	Lot #	Expiration	_
Isobutylene Ga	as [22-8650	11/29/2026	
ID: 107 or 169	3			
Cal Standard			Reading	Acceptable Range
10 ppm ▼			10	(9.8 - 10.2)
			Pump Flow mL/min	Acceptable Range
			570	(300+)
			Response Factor	
			1.0	
			D T D	A coomtoble Domes
			Bump Test Reading 10.01	Acceptable Range
	rap (1D: 2009) and 1 atteries Checked / R		l with Rental Package	Confirmed
AIKAIIIIE FACK D		A Batteries)	rewariver included	i es
36.11	ppbRae 3000	_		
Model	10.6 eV ▼	•		
Lamp S/N	594900570			
Barcode	U57503X			
Order #	561931			
		Calibrated By	Christian Pinto	
	Date	of Calibration	9/26/2024	Rev 4.0 6/7/24
All calibration			urer's specifications. Please r	→

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

Photo-Ionization Detector Calibration Certificate

	_	Lot #	Expiration	_
Isobutylene Gas	l	22-8650	11/29/2026	
ID: 107 or 1693				
Cal Standard			Reading	Acceptable Range
10 ppm ▼			10	(9.8 - 10.2)
			Pump Flow mL/min	Acceptable Range
			510	(300+) ▼
			Response Factor	
			1.0	
			Bump Test Reading	Acceptable Range
			9.94	9.0 - 11.0
			l with Rental Package crewdriver Included	Confirmed
Mainic I ack Dat		A Batteries)	newariver included	168
Model	ppbRae 3000	▼		
Lamp	10.6 eV ▼			
S/N	594-900568			
Barcode	U57541X			
Order#	561931			
		Calibrated By	Christian Pinto	
	Date	of Calibration	9/26/2024	Rev 4.0 6/7/24
All calibrations	performed by FFI cor	nform to manufact	urer's specifications. Please re	eport any issues within 24

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

Photo-Ionization Detector Calibration Certificate

		Lot #	Expiration	
Isobutylene Gas		22-8650	11/29/2026]
ID: 107 or 1693				
Cal Standard			Reading	Acceptable Range
10 ppm ▼			10	(98 - 102) ▼
. с рр				
			Pump Flow mL/min	Acceptable Range
			499	(300+) ▼
				(000)
			Response Factor	
			1.0	
			Pump Tost Dooding	Acceptable Range
			Bump Test Reading 10.07	9.0 - 11.0
Ensure Water Tra	p (ID: 2609) and T	Tubing Included	l with Rental Package	Confirmed
Alkaline Pack Batt	eries Checked / R	Removal Tool So	crewdriver Included	Yes
		A Batteries)		100
	12 222	_		
Model	ppbRae 3000	_		
Lamp	10.6 eV ▼			
S/N	594-900641			
Barcode Order #	U58038X 561931			
Oruel #	301931			
		Calibrated By	Christian Pinto	
	Date	e of Calibration	9/25/2024	Rev 4.0 6/7/24
All calibrations	performed by FEI cor	nform to manufact	urer's specifications. Please re	eport any issues within 24

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

Photo-Ionization Detector Calibration Certificate

		Lot #	Expiration	
Isobutylene Gas		22-8650	11/29/2026]
ID: 107 or 1693				
Cal Standard			Reading	Acceptable Range
10 ppm ▼			10	(98 - 102) ▼
10 PP.				
			Pump Flow mL/min	Acceptable Range
			523	(300+) ▼
				(000)
			Response Factor	
			1.0	
			Bump Test Reading	Acceptable Range
			10.02	9.0 - 11.0
Ensure Water Tra	p (ID: 2609) and T	Tubing Included	l with Rental Package	Confirmed
Alkaline Pack Batt	eries Checked / F	Removal Tool So	crewdriver Included	Yes
		A Batteries)		
	l. D 2000			
Model	ppbRae 3000	<u> </u>		
Lamp	10.6 eV ▼	ī		
S/N Barcode	594-901576 U62797X			
Order #	561931			
Order	301331	l .		
		Calibrated By	Christian Pinto	
	Date	e of Calibration	9/25/2024	Rev 4.0 6/7/24
All calibrations	performed by FFI cor	nform to manufact	urer's specifications. Please re	eport any issues within 24

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

Photo-Ionization Detector Calibration Certificate

		Lot #	Expiration	_
Isobutylene Gas	L	22-8650	11/29/2026	
ID: 107 or 1693				
Cal Standard			Reading	Acceptable Range
10 ppm ▼			10	(98 - 102)
			Pump Flow mL/min	Acceptable Range
			555	(300+) ▼
			Response Factor	
			1.0	
			D	A 411 B
			Bump Test Reading 9.94	Acceptable Range
Ensure Water Tra	ap (ID: 2609) and Ti	ubing Included	l with Rental Package	Confirmed
		· ·		
Alkaline Pack Bat		emoval Tool So Batteries)	crewdriver Included	Yes
		_		
Model	ppbRae 3000 ▼	7		
Lamp	10.6 eV ▼			
S/N	594-902247			
Barcode	U65825X			
Order #	561931			
		Calibrated By	Christian Pinto	
	Date (of Calibration	9/25/2024	Rev 4.0 6/7/24
All calibrations			urer's specifications. Please re	- eport any issues within 24

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

Photo-Ionization Detector Calibration Certificate

		Lot #	Expiration	_
Isobutylene Ga	as	22-8650	11/29/2026	
ID: 107 or 169	3			
Cal Standard			Reading	Acceptable Range
10 ppm ▼			10	(9.8 - 10.2)
			Pump Flow mL/min	Acceptable Range
			427	(300+)
			Dognanga Faatan	
			Response Factor	
			Bump Test Reading	Acceptable Range
			10.04	9.0 - 11.0
	_	· ·	d with Rental Package	Confirmed
Alkaline Pack B	atteries Checked / Re	emoval Tool So Batteries)	crewdriver Included	Yes
	(4 A AA	Danenes		
Model				
Lamp	10.6 eV ▼			
S/N	M01FA04151			
Barcode	U85284X			
Order #	561931			
		Calibrated By	Christian Pinto	
	Date of	of Calibration	9/26/2024	Rev 4.0 6/7/24
All calibration	ns performed by FEL conf	orm to manufact	turer's specifications. Please r	enort any issues within 24

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

Photo-Ionization Detector Calibration Certificate

Isobutylene Gas			Expiration	
		22-8650	11/29/2026	
ID: 107 or 1693				
Cal Standard			Reading	Acceptable Range
10 ppm ▼			10	(98 - 102)
			Pump Flow mL/min	Acceptable Range
			506	(300+)
			Response Factor	
			1.0	
			Bump Test Reading	Acceptable Range
			10.2	9.0 - 11.0
Insure Water Tra	n (II)• 2609) and '	l'iihing Incliidea	l with Rental Package	Confirmed
	teries Checked / I	Removal Tool So	l with Rental Package crewdriver Included	Confirmed
	teries Checked / I	J		
	teries Checked / I	Removal Tool So		
lkaline Pack Batt Model	teries Checked / I	Removal Tool So		
Alkaline Pack Batt	teries Checked / I (4 X A.	Removal Tool So		
Model Lamp S/N Barcode	ppbRae 3000 10.6 eV 594-917344 U107793X	Removal Tool So		
Alkaline Pack Batt Model Lamp S/N	ppbRae 3000 10.6 eV	Removal Tool So		
Model Lamp S/N Barcode	ppbRae 3000 10.6 eV 594-917344 U107793X	Removal Tool So		
Model Lamp S/N Barcode	ppbRae 3000 10.6 eV 594-917344 U107793X 561931	Removal Tool So	crewdriver Included	

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

Photo-Ionization Detector Calibration Certificate

		Lot #	Expiration	_
Isobutylene Ga	as	22-8650	11/29/2026	
ID: 107 or 169	3			
Cal Standard			Reading	Acceptable Range
10 ppm ▼			10	(9.8 - 10.2)
			Pump Flow mL/min	_ Acceptable Range
			483	(300+) ▼
			Response Factor	
			1.0	
			Bump Test Reading	Acceptable Range
			10.06	9.0 - 11.0
		J	l with Rental Package crewdriver Included	Confirmed
inumic I uch D		A Batteries)	20 Wally of Michaela	105
Model	ppbRae 3000	▼		
Lamp	10.6 eV ▼			
S/N	594-917345			
Barcode	U110414X			
Order#	561931			
		Calibrated By	Christian Pinto	
	Date	e of Calibration	9/26/2024	Rev 4.0 6/7/24
			urer's specifications. Please r	-


All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

Photo-Ionization Detector Calibration Certificate

	_	Lot #	Expiration	_
Isobutylene Gas	L	22-8650	11/29/2026	
ID: 107 or 1693				
Cal Standard			Reading	Acceptable Range
10 ppm ▼			10	(98 - 102)
			Pump Flow mL/min	Acceptable Range
			512	(300+) ▼
			Response Factor	
			1.0	
			Dumn Test Deading	Acceptable Range
			Bump Test Reading 9.97	9.0 - 11.0 ▼
Ensure Water Tra	ap (ID: 2609) and To	ubing Included	l with Rental Package	Confirmed
Alkaline Pack Bat			crewdriver Included	Yes
	(4 X AA	Batteries)		
Model	ppbRae 3000	7		
Lamp	10.6 eV ▼			
S/N	594-912843			
Barcode	U110744X			
Order#	561931			
		Calibrated By	Christian Pinto	
	Date	of Calibration	9/25/2024	Rev 4.0 6/7/24
All calibrations	performed by FEI conf	form to manufact	urer's specifications. Please re	eport any issues within 24

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

EXCLUSIVE NEGOTIATION AGREEMENT

(National Core/Signal Hill)

THIS EXCLUSIVE NEGOTIATION AGREEMENT ("Agreement") is entered into as of February [__], 2024 ("Effective Date"), by and between the CITY OF SIGNAL HILL ("City"), CITY OF SIGNAL HILL HOUSING AUTHORITY ("HA") and NATIONAL COMMUNITY RENAISSANCE OF CALIFORNIA, a California nonprofit public benefit corporation ("Developer"). City and HA are sometimes collectively referred to as "City" herein. HA, City and Developer are hereinafter sometimes referred to collectively as the "Parties" or individually as a "Party."

I. <u>NEGOTIATIONS</u>

City issued a Notice of Funding Availability ("NOFA") to secure an affordable housing developer to work with the City and Signal Hill Petroleum, a local property owner, to develop an affordable housing project on two separate sites known as: "Orange Bluff" an 8.6-acre property located on the south side of East 28th Street between Orange Avenue and Gundry Avenue and "Walnut Bluff" a 2-acre property located at the northwest corner of East Willow Street and Walnut Avenue.

The sites are owned by Signal Hill Petroleum ("SHP") and described in the legal description attached hereto as Exhibit A and by this reference incorporated herein (the "Property").

Developer's NOFA response identified the development of:

- 1. Approximately 85 units on 2.0 acres at Walnut Bluff
- 2. Approximately 290 units on 8.6 acres at Orange Bluff

The current site entitlements cap the development at 90 units at the Walnut Bluff site and 290 at the Orange Bluff site.

The City's NOFA indicated that the City has set aside approximately \$10,000,000 from multiple sources specifically to reduce an anticipated funding gap relating to the development and construction of affordable housing projects on the Property. Upon the satisfaction of conditions acceptable to, and execution of agreements between, the City and the Developer acceptable to the City, the City and its Signal Hill Housing Authority ("Authority") will provide the negotiated financing to assist with development and construction of the affordable housing community:

Pursuant to the terms of this Agreement, City and Developer shall negotiate in good faith, for the period stated in Section II below, the terms of an affordable housing agreement or other form of agreement or agreements ("AHA") to be entered into between City and Developer concerning Developer's development of the Property with a multifamily affordable housing development. Additionally, during the pendency of this Agreement Developer and SHP will negotiate a private transaction for the sale and purchase of the Property based upon the Schedule of Performance attached hereto as Exhibit B.

City agrees, for the period stated in Section II below, not to negotiate with any other Person regarding the use of funds identified in the NOFA without the prior written consent of Developer. For purposes of this Agreement, the term "*Person(s)*" means any one or more individuals, partnerships (whether general or limited), limited liability companies, trusts, estates, associations, corporations, or any other entities recognized by law or custom.

II. NEGOTIATION PERIOD AND DEPOSIT

A. <u>Negotiation Period</u>.

For a period of three hundred sixty-five (365) days commencing as of the Effective Date (the "Exclusive Negotiation Period"), the City and Developer agree to negotiate the terms of an AHA; provided, however that upon written request of Developer, the City may in the sole and absolute discretion of the City Manager extend the Exclusive Negotiation Period one or more times for up to a cumulative total of one hundred twenty (120) additional days. The term of the Exclusive Negotiation Period, as it may be extended, to the extent such extension(s) is/are granted, shall hereinafter be defined as the "Negotiation Period." At any time, Developer and City may mutually agree to terminate this Agreement without liability to either Party. Except as provided below, if, upon the expiration of the Negotiation Period, City and Developer have not each approved and executed an AHA, then this Agreement shall automatically terminate and Developer shall have no further rights regarding the subject matter of this Agreement or the funds identified in the NOFA, and City shall be free to negotiate with any other Person(s) with regard to the funds identified in the NOFA.

B. <u>Deposit</u>.

Concurrent with the Developer's execution of this Agreement, the Developer shall pay a deposit of Thirty Thousand Dollars (\$30,000) in immediately available funds ("*Deposit*") to the City to defray certain reasonable third-party costs which may be incurred by City in pursuing the contemplated negotiations with the Developer during the Negotiation Period, such as expenses incurred by the City for the services of consultants and attorneys. In no event shall Deposit funds be used to reimburse City for internal staff costs or overhead. Developer shall be entitled to a refund of any Deposit funds remaining with the City following the termination of this Agreement. City shall provide Developer a summary accounting of expenses charged against the Deposit monthly.

III. OBLIGATIONS OF DEVELOPER

A. Schedule of Performance

Unless any time period provided therein is modified at the sole discretion of the City Manager, Developer shall commence and complete all tasks required to be completed hereunder within the times set forth in the Schedule of Performance attached hereto as Exhibit B and by this reference incorporated herein. By its execution of the Consent and Acknowledgment attached hereto as Exhibit C, SHP acknowledges the tasks and timing provided in the Schedule of Performance and additionally authorizes Developer to process with the City for entitlements necessary to develop an affordable housing project on the Property.

B. <u>Community Outreach</u>

Within the time set forth in the Schedule of Performance, Developer, at its cost and in consultation with City, shall conduct community outreach designed to familiarize the community with the type of development typically developed by Developer and the type proposed by Developer for the Property. Not less than ten (10) days prior to any such meeting, Developer shall mail notice of such meeting to all property owners (and residents who are not owners but who have requested such notice) located within five hundred (500) feet of the exterior boundaries of the Property. Developer shall provide the attendees of such meetings and any other members of the community who have indicated their interest with the name and communication information of a Developer representative who may be contacted with additional questions any of such persons may have.

C. <u>Evidence of Financing</u>

Within the time set forth in the Schedule of Performance, Developer, at its cost, shall provide the Deputy City Manager with a schedule of proposed sources of funding for, and uses of funds and financial pro forma for, the development of the Property. In addition, during the term of this Agreement, Developer shall promptly provide the City Manager with copies of any applications for funding or other funding requests submitted by Developer to finance the development of the Property, and any response documentation received in connection with such submittals. Notwithstanding the foregoing, however, Developer shall not be required to obtain written commitments for any such financing during the term of this Agreement; the Parties anticipate that this subject will be dealt with in the AHA.

D. <u>Development Plans, Entitlements, and CEQA Review</u>

The Parties acknowledge that as a part of the NOFA process Developer has submitted to the City both a conceptual site plan for the Property (the "Site Plan") and a financing plan, copies of which are attached hereto as Exhibit D. City and Developer acknowledge that during the Negotiation Period, the Site Plan will be refined, based on discussions and meetings with City representatives and the activities to be conducted by Developer pursuant to this Agreement, including, without limitation, the neighborhood outreach described in Paragraph C above. Concurrently with such refinement, and in accordance with the timeframes set forth in the Schedule of Performance, Developer shall commence processing any entitlements necessary for development of the Property (collectively, the "Entitlements"), and shall furnish such information to City regarding the Site Plan as may be required by City to perform an environmental review for an AHA, the Entitlements, and any permits for the development of the Property required pursuant to the California Environmental Quality Act ("CEQA"). All fees and expenses for engineers, architects, financial consultants, legal, planning or other consultants retained by Developer to perform Developer's obligations set forth in this Agreement shall be the sole responsibility of Developer. City shall not be obligated to pay or reimburse any such fees and expenses incurred by Developer whether or not this Agreement is eventually terminated or extended, or whether or not an AHA is entered into between City and Developer in the future. All costs associated with any formal submittals and all costs associated with the preparation of environmental documents under CEQA shall be borne by Developer. Nothing herein reduces or eliminates any requirements

of City or any other governmental entity with jurisdiction over the Property with respect to development of the Property.

E. <u>Developer's Findings and Reports to City Manager</u>

Developer, at its cost, shall, at the request of the City Manager, make periodic oral progress reports on all matters related to the Project and all studies being made related to Developer's acquisition and development of the Property, to the extent that they do not include confidential matters. Developer, at its cost, shall provide qualified representatives to participate in workshops, meetings, or presentations concerning the Property as reasonably required by the City Manager.

F. Restrictions Against Change In Ownership, Management And Control of Developer and Assignment of Agreement

- 1. The qualifications and identity of Developer and its principals are of particular concern to the City. It is because of these qualifications and identity that City has entered into this Agreement with Developer. Except as provided below, during the Negotiation Period, no voluntary or involuntary successor-in-interest of Developer shall acquire any rights or powers under this Agreement. Developer shall not assign or transfer all or any part of this Agreement or any rights in or under this Agreement, without the prior written approval of the City Manager, which approval may be given or withheld in the City Manager's sole and absolute discretion. Any assignment or transfer of an interest, whether voluntary or involuntary, by Developer that has not been approved in writing by the City Manager prior to the time of such assignment or transfer shall be deemed a material breach of this Agreement by Developer which shall entitle City to terminate this Agreement, without liability, by sending written notice of termination to Developer, referencing this Paragraph F. Notwithstanding the foregoing, Developer shall be permitted to assign its rights under this Agreement to a limited partnership, the general partner of which is either (i) Developer, or (ii) an entity owned by Developer and over which Developer has managerial control, provided Developer and the proposed assignee execute an assignment and assumption agreement in a form approved by the Signal Hill City Attorney, pursuant to which the proposed assignee assumes all of Developer's obligations hereunder.
- 2. Developer shall give prompt written notice to the City Manager of any and all changes whatsoever in the identity of the business entities or individuals in control of Developer of which information Developer or any of its members, partners or officers are notified or may otherwise have knowledge or information. Failure of Developer to so notify the City Manager in writing within five (5) business days of such changes or obtaining such knowledge shall constitute a material breach by Developer of this Agreement and City may terminate this Agreement, without liability to City, by sending written notice of termination to Developer, referencing this Paragraph F.

G. Acknowledgments and Reservations

1. If this Agreement expires or is terminated for any reason, or a future AHA is not executed by both City and Developer for any reason, neither City nor Developer shall be under any further obligation to each other regarding the disposition of the Property or the development thereof.

2. Developer acknowledges and agrees that no provision of this Agreement shall be deemed to be an offer or proposal by City to Developer, nor an acceptance by City of any offer or proposal from Developer, for City to provide any financial or other assistance to Developer for development of the Property. The Parties anticipate that any such financial commitments will be contained in the AHA.

H. <u>Developer Financial Disclosures</u>

City reserves the right to obtain further information, data, and commitments to ascertain the ability and capacity of Developer to develop the Property. Developer acknowledges that it may be requested to make certain confidential financial disclosures to City, its staff or legal counsel, as part of the financial due diligence investigations of City relating to the potential disposition of the Property and its development. City and Developer recognize that such financial disclosures may contain sensitive information relating to other business transactions of Developer, that the disclosure of such information to third parties could impose commercially unreasonable and/or anti-competitive burdens on Developer and, correspondingly, diminish the value or fiscal benefit that may accrue to City upon the disposition of the Property and development thereof by Developer, if a future AHA is entered into between City and Developer. Accordingly, City agrees to maintain the confidentiality of any business records of Developer disclosed to City, except as the City Attorney reasonably determines must be disclosed pursuant to the California Public Records Act or other applicable law. The defense of any action seeking disclosure of protected business records shall be at Developer's expense and handled by legal counsel selected by Developer and reasonably acceptable to the Signal Hill City Attorney.

I. Nondiscrimination

In undertaking its obligations under this Agreement, Developer covenants by and for itself and its representatives, officers, administrators, and assigns, and all persons claiming under or through them, that there shall be no discrimination against or segregation of, any person or group of persons on account of any basis listed in subdivision (a) or (d) of Section 12955 of the Government Code as those bases are defined in Sections 12926, 12926.1, subdivision (m) and paragraph (1) of subdivision (p) of Section 12955, and Section 12955.2 of the Government Code, nor shall Developer or any person claiming under or through Developer, establish or permit any practice or practices of discrimination or segregation with reference to the selection, location, number, use or occupancy of tenants, lessees, subtenants, sublessees, or vendees.

J. Infill Infrastructure Grant

The Parties anticipate that the development of the Property for subsequent construction of an affordable housing community would be facilitated by a successful award of a grant from the State of California under its Infill Infrastructure Grant Program ("IIG") administered by the California Department of Housing and Community Development ("HCD"). IIG awards are made to promote infill housing development by providing financial assistance for capital improvement projects to facilitate the development of affordable housing. Awards are made in response to an HCD NOFA, and IIG grants to pay project eligible costs (such as utility service relocation and improvement, streets, transit linkages, site preparation and demolition) are made based upon the competitive process outlined in such an HCD NOFA and upon the provision by the State of

California of funding to the IIG Grant Program. The Parties acknowledge that while the award of an IIG grant would enhance the development of an affordable housing community on the Property, HCD must first issue its NOFA and the State must fund the Infill Infrastructure Grant Program. Consequently, Developer shall work with the City as early as reasonably possible during the term of this Agreement to prepare on the City's behalf an application for an IIG grant in the amount of up to \$30,000,000. The Parties anticipate that IIG funding would be used to pay eligible costs to address existing shortcomings at and around the Property including utility and frontage improvements, demolition, grading, retaining wall construction, wet and dry utilities, and erosion control. If, and once, an IIG grant is awarded, Developer shall implement and administer the IIG grant funds for the City.

IV. <u>REMEDIES</u>

A. Default and Breach

- 1. Failure or delay by either Party to perform any material term or provision of this Agreement shall constitute a "default" under this Agreement. Subject to the effect of applicable force majeure provisions of Section VI, Paragraph K, if the Party who is claimed to be in default by the other Party commences to cure, correct, or remedy the default within fifteen (15) calendar days after receipt of written notice specifying such default and diligently completes such cure, correction or remedy within fifteen (15) calendar days after the expiration of the initial fifteen (15) day period (for a total of thirty (30) calendar days to cure the default), such Party shall not be in default under this Agreement. In no event shall any time to cure, correct or remedy a default extend the Negotiation Period.
- 2. The Party claiming that a default has occurred shall give written notice of default to the Party claimed to be in default, describing the alleged default with reasonable specificity. Delay in giving such notice shall not constitute a waiver of any default nor shall it change the time of default. However, the injured Party shall have no right to exercise any remedy permitted for a "breach" (as defined below) under this Agreement, without first delivering written notice of the default.
- 3. Any failure or delay by a Party in asserting any of its rights or remedies as to any default shall not operate as a waiver of any default or of any rights or remedies associated with a default. Except with respect to rights and remedies expressly declared to be exclusive in this Agreement, the rights and remedies of the Parties are cumulative and the exercise by either Party of one or more of such rights or remedies shall not preclude the exercise by such Party, at the same or different times, of any other rights or remedies for the same default or any other default by the other Party.
- 4. Subject to applicable force majeure provisions of this Agreement, if a Party in default fails either (i) to commence to cure, correct or remedy the default within fifteen (15) calendar days following written notice of such default, or (ii) to complete such cure, correction or remedy within fifteen (15) calendar days after the expiration of the initial fifteen (15) day period (for a total of thirty (30) calendar days to cure the default), a "breach" of this Agreement by the defaulting Party shall be deemed to have occurred. In no event shall City's disapproval or conditional approval of the Site Plan, the AHA, any CEQA review, or any other matters that

require City's approval pursuant to this Agreement or applicable law constitute a default or breach under this Agreement by City.

B. Remedies for Breach of Agreement.

In the event of an uncured default under this Agreement, the sole remedy of the non-defaulting Party shall be to terminate this Agreement. Following the termination of this Agreement, neither Party shall have any further rights, remedies, or obligations under this Agreement, except as specifically set forth herein. Neither Party shall have any liability to the other for monetary damages for the breach of this Agreement, or failure to reach agreement on an AHA, and each Party hereby waives and releases any such rights or claims it may otherwise have at law or at equity. The Parties' rights and obligations under this Paragraph B shall survive the expiration or termination of this Agreement.

V. <u>INDEMNIFICATION, RIGHT OF ENTRY, INSURANCE, AND OTHER ISSUES</u>

A. <u>Indemnification</u>

Developer shall defend, indemnify and hold harmless the City and its officers, officials, members, employees, agents, representatives, and volunteers (when acting in an official capacity), from and against all damages and liability, including but not limited to any and all claims, demands, expenses, fees, costs, liabilities, suits, causes of action, litigation, attorney's fees, and expert witness fees (all of the foregoing, collectively, "*Claims*") arising from or related to the performance or nonperformance by Developer or its principals, directors, managers, shareholders, partners, employees, agents, or representatives in connection with this Agreement, including but not limited to Developer's investigation of the Property. Notwithstanding the foregoing, Developer shall not be responsible for any damages or liability to the extent caused by the negligence or willful misconduct of City or any of its officers, officials, members, employees, agents, representatives, or volunteers acting in an official capacity. This indemnity shall survive the termination of this Agreement.

B. Insurance

- 1. Within ten (10) days of the Effective Date of this Agreement, without limiting Developer's indemnification obligations as set forth in this Agreement, Developer shall procure and maintain, at its sole cost and expense, the following policies of insurance:
- a. Commercial General Liability insurance written on a per occurrence basis in an amount not less than \$1,000,000 per occurrence.
- b. Business Auto Coverage written on a per accident basis in an amount not less than \$1,000,000 per accident. If Developer or Developer's employees use personal autos in connection with the performance of work under this Agreement, Developer shall provide evidence of personal auto liability coverage for each such person or of evidence of such coverage or of reasonably similar coverage under any umbrella insurance policy maintained by Developer.
- c. If applicable, Worker's Compensation insurance providing statutory benefits as required by California law.

- 2. All of the insurance policies required hereunder, except the worker's compensation insurance, shall comply with the following requirements:
- a. All insurance shall be written by insurers that are admitted and licensed to do business in the State of California and with A.M. Bests rating of A- or better and a minimum financial size VII.
- b. The policies shall be endorsed to name as additional insureds the City and its officers, officials, members, employees, and agents.
- c. All of Developer's insurance: (a) shall contain no special limitations on the scope of protection afforded to the additional insureds; and (b) shall be primary insurance with regard to additional insureds and any insurance or self-insurance maintained by the additional insureds or any of them shall be in excess of Developer's insurance and shall not contribute with it.
- d. The policies shall be "occurrence" rather than "claims made" insurance.
- e. The policies shall apply separately to each insured against whom a claim is made or suit is brought, except with respect to the limits of the insurer's liability.
- f. The policies shall prohibit Developer from waiving the right of subrogation prior to a loss.
- g. The policies shall not contain any provision or definition that would serve to eliminate so-called "third party action over" claims, including any exclusion for bodily injury to an employee of the insured.
- 3. Developer shall provide the City Manager with certificates of insurance evidencing the above insurance coverages and said certificates of insurance have been reasonably approved by City. In the event any of said policies of insurance are reduced in limits or cancelled for any reason, Developer shall, prior to the cancellation date, submit new evidence of insurance, in conformance with this Paragraph B.
- 4. The provisions of any workers' compensation or similar act shall not limit the obligations of Developer under this Agreement. Developer expressly agrees not to use any statutory immunity defenses under such laws with respect to City or its officers, officials, members, employees, agents, representatives, or volunteers acting in an official capacity.
- 5. Developer agrees to provide immediate notice to City of any claim or loss against Developer arising out of any acts or omissions of Developer under this Agreement. City assumes no obligation or liability by such notice, but has the right to monitor the handling of any such claim or claims if they are likely to involve the City or any officer, official, member, employee, agent, or representative of City acting in an official capacity.

VI. <u>MISCELLANEOUS</u>

A. <u>Compliance With Law</u>

Developer acknowledges that any future AHA, if approved by City, will require Developer (among other things) to carry out the development of the Property in conformity with all applicable laws, including all applicable building, planning and zoning laws, environmental laws, safety laws, and, if applicable, federal and state labor and wage laws including, but not limited to, any prevailing wage requirements pursuant to California Labor Code section 1720 *et seq*.

B. Third-Party Beneficiaries

None of the terms or provisions of this Agreement are intended to benefit any person or entity other than City or Developer. No affiliate or joint venturer or partner of Developer has any rights pursuant to this Agreement.

C. No Broker or Finder

Developer shall indemnify, defend, and hold harmless City from and against any claim or lawsuit (including reasonable attorneys' fees and costs and all costs of suit, expert witness fees, costs on appeal, and for discovery) for the payment of any real estate commissions or finder's or broker's fees arising out of this Agreement.

D. Governing Law; Venue; Attorneys' Fees

City and Developer agree that this Agreement shall be governed by, interpreted under, and construed and enforced in accordance with, the internal laws of the State of California without application of principles of conflicts of law. City and Developer acknowledge and agree that this Agreement was negotiated and entered into in the City of Signal Hill, California. Any legal action brought under this Agreement must be instituted in the Superior Court of the County of Los Angeles, or in the Federal District Court of the applicable federal district of California. In the event of any litigation between the Parties, the prevailing Party shall be entitled to receive, in addition to the relief granted, its reasonable attorneys' fees and costs and such other costs incurred in investigating the action and prosecuting the same, including costs for expert witnesses, costs on appeal, and for discovery.

E. Partial Invalidity

If any term or provision or portion thereof of this Agreement or the application thereof to any person or circumstance shall, to any extent, be invalid or unenforceable, the remainder of this Agreement, or the application of such term or provision or portion thereof to persons or circumstances other than those as to which it is held invalid or unenforceable, shall not be affected thereby, and each such term and provision of this Agreement shall be valid and enforced to the fullest extent permitted by law.

F. Waivers

No waiver of any breach of any covenant or provision contained in this Agreement shall be deemed a waiver of any preceding or succeeding breach of such provision, or of any other covenant or provision contained in this Agreement. Unless required by the force majeure provisions of this Agreement, no extension of the time for performance of any obligation or act or any waiver of any provision of this Agreement shall be enforceable against City or Developer, unless made in writing and executed by both City and Developer.

G. Notices.

All notices under this Agreement shall be delivered by personal delivery, by a reputable same-day or overnight courier service that provides a receipt with the date and time of delivery, or by mailing in the U.S. mail by prepaid certified mail. Notices shall be directed to the respective Parties as follows:

If to City: City of Signal Hill

Attn: Carlo Tomaino, City Manager

2175 Cherry Ave Signal Hill, CA 90755

If to Developer: National Community Renaissance of California

Attn: Michael Ruane, President 9692 Haven Avenue, Suite 100 Rancho Cucamonga, CA 91730

A Party may change the address for delivery of notices to it as such Party may from time to time designate in writing to the other Party by a written notice conforming to the requirements of this section. Notices delivered by personal delivery, or same-day or overnight courier service shall be effective upon receipt (provided that any notices received after 5:00 p.m. on a business day or on a holiday or a weekend shall not be deemed received until 9:00 a.m. the next business day). Notices delivered by mail shall be effective as of noon on the second business day following deposit with the United States Postal Service.

H. Calendar Days and Business Days

As used herein, the term "days" shall mean calendar days unless the term "business days" is used. As used herein, a "business day" shall mean a day that Signal Hill City Hall is open for business to the general public. Developer acknowledges that Signal Hill City Hall is closed for holidays designated by the State of California or by ordinance or resolution of the City Council of the City. If the date on which City or Developer are required to take any action pursuant to the terms of this Agreement is not a business day, the action shall be taken on the next succeeding business day.

I. Construction

Headings at the beginning of each section and subsection of this Agreement are solely for the convenience of reference of City and Developer and are not a part of this Agreement.

Whenever required by the context of this Agreement, the singular shall include the plural and the masculine shall include the feminine and vice versa. This Agreement shall not be construed as if it had been prepared by one or the other of City or Developer but rather as if both City and Developer prepared this Agreement. Unless otherwise indicated, all references to sections are to this Agreement. If any exhibits are referred to in this Agreement, such exhibits are either attached to this Agreement or incorporated into this Agreement by reference.

J. Nonliability of City Officials, Officers, and Employees

No officer, official, member, employee, agent, representative, or volunteer (when acting in an official capacity) of the City shall be personally liable to Developer, or any successors in interest, in the event of any default or breach by City of this Agreement, or for any amount which may become due to Developer or to any successors under this Agreement, or for a breach by City of any obligation of the terms of this Agreement.

K. Enforced Delay; Extension of Times of Performance

In addition to specific provisions of this Agreement, performance by either Party (who is not then otherwise in material default) shall not be deemed to be in default where delays or defaults are due to war, insurrection, strikes, lock-outs, riots, floods, earthquakes, fires, casualties, supernatural causes, acts of the public enemy, terrorism, epidemics, quarantine restrictions, freight embargoes, lack of transportation, governmental restrictions or priority, litigation, unusually severe weather, inability to secure necessary labor, materials or tools, delays of any contractor, subcontractor or supplies, acts of the other Party, acts or failure to act of City or any other public or governmental agency or entity, including, without limitation, unreasonable delays in the processing and issuance of required permits for a development project required by Developer (except that any act or failure to act of City shall not excuse performance by City) or any other causes beyond the reasonable control or without the fault of the Party claiming an extension of time to perform, for up to a maximum cumulative period of ninety (90) days. Notwithstanding the foregoing, inability to secure satisfactory financing, tenant or manufacturer commitments, or market and economic conditions shall not entitle Developer to an extension of time to perform. An extension of time for any such cause shall be for the period of the enforced delay and shall commence to run from the time of the commencement of the cause, if notice by the Party claiming such extension is sent to the other Party within ten (10) days of knowledge of the commencement of the cause. In addition, times of performance under this Agreement may be extended by mutual written agreement by City and Developer.

L. Time of the Essence

Time is of the essence in this Agreement and of each and every term and provision hereof, it being understood that the Parties hereto have specifically negotiated the dates or time limits for the completion of each obligation herein.

M. Entire Agreement; Amendment.

This Agreement sets forth the entire agreement between the Parties with respect to the subject matter set forth herein and supersedes all prior discussions and negotiations between the

Parties with respect thereto. No amendment to this Agreement shall be effective unless set forth in a writing signed by an authorized signatory of each Party.

N. <u>Counterparts.</u>

This Agreement may be executed in any number of duplicate originals, all of which shall be of equal legal force and effect upon all of the Parties hereto signing this Agreement.

- P. Warranty Against Payment of Consideration for Agreement. The Developer warrants that it has not paid or given, and will not pay or give, any third party any money or other consideration for obtaining this Agreement. Third parties, for the purposes of this Section VI, P, shall not include persons to whom fees are paid for professional services, if rendered by attorneys, financial consultants, accountants, engineers, architects, brokers and other consultants, when such fees are considered necessary by the Developer.
- Q. <u>Press Releases.</u> The Developer agrees to obtain the approval of the City Manager or his or her designee or successor in function of any press releases Developer may propose relating to the sale or development of the Property or negotiation of an AHA with the City, prior to publication.

[Signature pages follow]

EXCLUSIVE NEGOTIATION AGREEMENT

(National Core/Signal Hill)

IN WITNESS WHEREOF, the Parties have executed and entered into this Agreement as of the Effective Date.

DEVELOPER:

NATIONAL COMMUNITY RENAISSANCE OF CALIFORNIA,

a California non-profit public benefit corporation

By:

Name: Michael Ruane

Title: President

CITY:

CITY OF SIGNAL HILL, a public body corporate and politic

DocuSigned by:

By:

ori U. Woods Lori Y. Woods

Name: Title:

Mayor

Kimberly Boles, Senior Deputy City Clerk

APPROVED AS TO FORM:

Matthew Richardson

-0A0E66577B674DC Matthew Richardson

By:

Name: City Attorney

EXHIBIT A

LEGAL DESCRIPTION

[Attached.]

55728.00001\41747473.7

EXHIBIT A

LEGAL DESCRIPTION

ORANGE BLUFF SITE

PROPERTY ADDRESS: None assigned; 2751-71± Gundry Avenue, Signal Hill, California 90755

APNs: 7212-008-049, 051 AND 7212-010-010, 019, 020

LEGAL DESCRIPTION: Portion of Lot 60, American Colony Tract, per map recorded in Book 19, Page 89 and 90 of Miscellaneous Records; and Lots 1 and 2, Cook Tract, per map recorded in Book 10, Page 131 of Maps; and Portion of Lot 1, Block A, La Vista Tract, per map recorded in Book 6, Page 160 of Maps, in the office of the County Recorder, County of Los Angeles, California, excepting therefrom all minerals, gas, oils, petroleum, etc.

WALNUT BLUFF SITE

APN: 7212-010-038

PROPERTY ADDRESS: None assigned; 1451± Willow Avenue, Signal Hill, California 90755

LEGAL DESCRIPTION: Portion of lot 67, American Colony Tract, per map recorded in Book 19, Page 89 and 90 of Miscellaneous Records; County of Los Angeles, California, excepting therefrom all minerals, gas, oils, petroleum, etc.

EXHIBIT B

SCHEDULE OF PERFORMANCE

ITEM	OF PERFORMANCE	TIME FOR PERFORMANCE
1.	Negotiate terms of site control with Signal Hill Petroleum.	Within sixty (60) calendar days of effective date.
2.	Refine and present to HA and City staff, for review, the following for each site: (a) Site Plan. A conceptual development site plan for each proposed Projects that describes and depicts: (1) the location and orientation of proposed buildings; and (2) the architecture of the proposed buildings; and (3) floor plans including unit plans; (b) Financial Pro Forma. A preliminary financial pro forma for each Project that includes cost financing (sources and uses), development costs, income, operating expenses and a cash flow analysis; (c) Project Schedule. A proposed time	Within one hundred and twenty (120) calendar days of effective date.
	schedule from commencement to completion of the Projects;	
3.	Enter into a valid, enforceable contingent purchase and sale agreement or option agreement to establish site control.	Within sixty (60) calendar days of finalizing the terms for site control.
4.	Conduct HA Board/City Council/Community workshop.	Within sixty (60) calendar days of submitting the refined development plan, Developer shall facilitate at least one workshop for the HA Board, City Council, and community in a format to be designed in concert with HA and City staff.
5.	Negotiation of Affordable Housing Agreement.	Within three hundred and sixty-five (365) calendar days of effective date, or as required for funding applications, whichever is first.

EXHIBIT C

Signal Hill Petroleum Consent and Acknowledgement

[Attached.]

CONSENT AND ACKNOWLEDGEMENT

I,	, in my capacity as	for Signal Hill Petroleum consent to the
City and Develon the City of Signation 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	oper, as those terms are define al Hill and National Communit	d in the Exclusive Negotiation Agreement among y Renaissance of Southern California, pursuing and
	at the following locations:	titlements for the development of an affordable
1		
2		
comply the Sch	S	eum, acknowledge and agree to use best efforts to complete the land transaction between Signal Hill meframe set forth therein.
	Ву	
	Na	me:
	Tit	le:

EXHIBIT D SITE PLAN AND FINANCING PLAN

Conceptual Site Plan

ORANGE BLUFF

297 units in three buildings

- Phase 1 (Bldg A,B,C): 205
- units (90 one-bedroom, 62 two-Phase 2 (Bldg D+E): 92 units bedroom, 53 three-bedroom)
 - bedroom, 24 three-bedroom) (42 one-bedroom, 26 two-

3-story Contemporary design

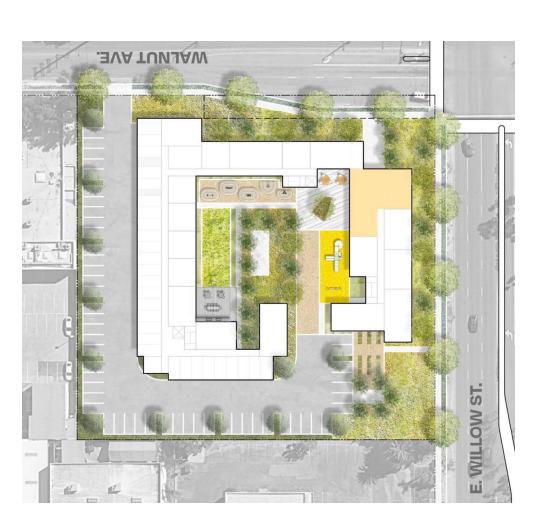
Parking – 309 spaces per code

Community Amenities:

- 5,160 SF Boys & Girls Club/ Community Center Central Lawn
 - Swimming Pool Playground
- BBQ Lounge Areas
- Pet Pocket Parks

Rendering
ORANGE BLUFF

DocuSign Envelope ID: 4B1F479B-EEAD-4E3F-91F3-408B9FCC847A



Rendering
ORANGE BLUFF

DocuSign Envelope ID: 4B1F479B-EEAD-4E3F-91F3-408B9FCC847A

Conceptual Site Plan

WALNUT BLUFF

85 units in one courtyard building:

- 38 one-bedrooms
- 25 two-bedrooms
- 22 three-bedrooms

4-story Contemporary design

Parking – 88 spaces per code

Community Amenities:

- 3,000 SF Community Center Playground
 - Shaded BBQ Lounge Areas
- Community Gardens Fitness Area

Rendering WALNUT BLUFF

WILLESTARSHAPENIER

Rendering WALNUT BLUFF

Rendering WALNUT BLUFF

DocuSign Envelope ID: 4B1F479B-EEAD-4E3F-91F3-408B9FCC847A

Approach to Financing

- Bluff sites while avoiding competing funding cycles Concurrently develop the Walnut and Orange
- Maximize leveraging of City's \$10M for a \$183M development delivering 382 apartment homes + 5,000 SF Boys & Girls Club Facility
- Reduce risk by undertaking infrastructure improvements with long lead times early
- Phase O: Infrastructure
- Prioritize sources that do not require state and/or federal pre-vailing wages to contain costs
- Utilize CORE's bond proceeds for predevelopment

Phase 0 – Infrastructure

INFILL INFRASTRUCTURE GRANT (IIG) - Up to \$30M

- Offsite Utilities
- **Improvements** Frontage

Onsite

- Demolition
- Grading
 Retaining Wall
 Wet Utility
 Dry Utility
 Erosion Control

Walnut Bluff Financing

85 units on 2.0 acres

UNIT MIX

38 one-bedroom

25 two-bedroom 22 three-bedroom

AFFORDABILITY

30% AMI - 24 units 40% AMI - 11 units 50% AMI - 18 units

60% AMI – 11 units 70% AMI – 12 units 80% AMI – 8 units 1 managers unit

Potential Funding Sources	Estimated Amount
LIHTC – 9%	\$ 30,107,459
Permanent Loan	\$ 3,492,256
DTSC / EPA Grant	\$ 3,000,000
Gateway Cities Housing Trust	\$ 2,500,000
FLHB AHP	\$ 850,000
Affordable Housing In-Lieu	\$ 745,419
PLHA	\$ 167,262
TOTAL	\$ 40,862,496

¹ TCAC Rents

² Assumes 8 Project Based Vouchers

³ Standard Wages

⁴ Tax Credit Pricing (Federal) \$0.95 / (State) \$0.88

Orange Bluff Phase 1 Financing

205 units on 6.4 acres

AFFORDABILITY

70% AMI – 22 units80% AMI – 16 units

XIW LINO

90 one-bedroom 62 two-bedroom

53 three-bedroom

30% AMI - 63 units45% AMI - 62 units55% AMI - 40 units

2 managers units

\$ 97,585,568

⁴ Tax Credit Pricing (Federal) \$0.95 / (State) \$0.88

TOTAL

¹ HSC Rents: 30% units at 30% AMI and 18% units above 60% AMI

² Assumes 8 Project Based Vouchers

³ Standard Wages

Orange Bluff Phase 2 Financing

92 units on 2.2 acres

AFFORDABILITY

Unit Mix

42 one-bedroom 26 two-bedroom

24 three-bedroom

30% AMI – 28 units 45% AMI – 28 units 55% AMI - 22 units

70% AMI – 5 units 80% AMI – 8 units

1 managers units

Potential Funding Sources	Estimated Amount
LIHTC – 9%	\$31,619,097
Permanent Loan	\$ 2,864,187
City Loan	\$ 3,000,000
DTSC / EPA Grant	\$ 3,000,000
Gateway Cities Housing Trust	\$ 2,500,000
FHLB AHP	\$ 920,000
TOTAL	\$ 43,903,384

¹ HSC Rents – 30% units at 30% AMI and 14% units above 60% AMI

² Assumes 8 Project Based Vouchers

3 Standard Wages

4 Tax Credit Pricing (Federal) \$0.95 / (State) \$0.88

EXCLUSIVE NEGOTIATION AGREEMENT

(National Core/Signal Hill)

THIS EXCLUSIVE NEGOTIATION AGREEMENT ("Agreement") is entered into as of November [__], 2025 ("Effective Date"), by and between the CITY OF SIGNAL HILL ("City"), CITY OF SIGNAL HILL HOUSING AUTHORITY ("HA") and NATIONAL COMMUNITY RENAISSANCE OF CALIFORNIA, a California nonprofit public benefit corporation ("Developer"). City and HA are sometimes collectively referred to as "City" herein. HA, City and Developer are hereinafter sometimes referred to collectively as the "Parties" or individually as a "Party."

I. <u>NEGOTIATIONS</u>

In 2023 and 2024, City issued a Notice of Funding Availability ("NOFA") to secure an affordable housing developer to work with the City and Signal Hill Petroleum, a local property owner, to develop an affordable housing project on two separate sites known as: "Orange Bluff" an 8.6-acre property located on the south side of East 28th Street between Orange Avenue and Gundry Avenue and "Walnut Bluff" a 2-acre property located at the northwest corner of East Willow Street and Walnut Avenue.

Developer and City entered into an Affordable Housing Agreement for the development of the Walnut Bluff location. The ENA governing the Orange Bluff site expires on November 15, 2025.

The Parties would now like to enter into a new ENA regarding the Orange Bluff site and an additional property, publicly or privately owned. The City has identified a potential site, known as the 28th Street Property. The Orange Bluff site is owned by Signal Hill Petroleum ("SHP") and described in the legal description attached hereto as Exhibit A and by this reference incorporated herein (the "OB Property"). The City owns the 28th Street site and it is described in the legal description attached hereto as Exhibit A-1 and by this reference incorporated herein (the "28th Street Property"). The OB Property and 28th Street Property or alternative site are referred to as "Property" herein. Additionally, City and Developer will continue to work to identify another site within the City that could accommodate the proposed 28th St project (or something similar) to ensure the Parties have identified the most advantageous site for the development of an affordable housing project.

Pursuant to the terms of this Agreement, City and Developer shall negotiate in good faith, for the period stated in Section II below, the terms of an affordable housing agreement or other form of agreement or agreements ("AHA") to be entered into between City and Developer concerning Developer's development of the 28th Street Property or alternative identified site with a multifamily affordable housing development based on the Schedule of Performance attached hereto as Exhibit B-1. Additionally, during the pendency of this Agreement Developer and SHP will negotiate a private transaction for the sale and purchase of the OB Property based upon the Schedule of Performance attached hereto as Exhibit B.

City agrees, for the period stated in Section II below, not to negotiate with any other Person regarding the use of the remaining funds identified in the NOFA or the 28th Street Property without the prior written consent of Developer. For purposes of this Agreement, the term "*Person(s)*" means any one or more individuals, partnerships (whether general or limited), limited liability companies, trusts, estates, associations, corporations, or any other entities recognized by law or custom.

II. <u>NEGOTIATION PERIOD AND DEPOSIT</u>

A. Negotiation Period.

For a period of three hundred sixty-five (365) days commencing as of the Effective Date (the "Exclusive Negotiation Period"), the City and Developer agree to negotiate the terms of an AHA for the 28th Street Property or other identified site and seven hundred –thirty (730) days to negotiate the terms of an AHA for the OB Property; provided, however that upon written request of Developer, the City may in the sole and absolute discretion of the City Manager extend the Exclusive Negotiation Period one or more times for up to a cumulative total of one hundred twenty (120) additional days for each property. The term of the Exclusive Negotiation Period, as it may be extended, to the extent such extension(s) is/are granted, shall hereinafter be defined as the "Negotiation Period." Upon identification of an alternative to the 28th Street Property, the Parties will present an amendment to this ENA to the City Council for consideration. At any time, Developer and City may mutually agree to terminate this Agreement without liability to either Party. Except as provided below, if, upon the expiration of the Negotiation Period, City and Developer have not each approved and executed an AHA, then this Agreement shall automatically terminate and Developer shall have no further rights regarding the subject matter of this Agreement or the remaining funds identified in the NOFA, and City shall be free to negotiate with any other Person(s) with regard to the remaining funds identified in the NOFA or the City owned property identified herein.

B. <u>Deposit</u>.

Concurrent with the Developer's execution of this Agreement, the Developer shall pay a deposit of Thirty Thousand Dollars (\$30,000) in immediately available funds ("*Deposit*") to the City to defray certain reasonable third-party costs which may be incurred by City in pursuing the contemplated negotiations with the Developer during the Negotiation Period, such as expenses incurred by the City for the services of consultants and attorneys. In no event shall Deposit funds be used to reimburse City for internal staff costs or overhead. Developer shall be entitled to a refund of any Deposit funds remaining with the City following the termination of this Agreement. City shall provide Developer a summary accounting of expenses charged against the Deposit monthly.

III. OBLIGATIONS OF DEVELOPER

A. Schedule of Performance

Unless any time period provided therein is modified at the sole discretion of the City Manager, Developer shall commence and complete all tasks required to be completed hereunder within the times set forth in the respective Schedules of Performance attached hereto as Exhibit B

and Exhibit B-1 and by this reference incorporated herein. By its execution of the Consent and Acknowledgment attached hereto as <u>Exhibit C</u>, SHP acknowledges the tasks and timing provided in the Schedule of Performance concerning the OB Property and additionally authorizes Developer to process with the City for entitlements necessary to develop an affordable housing project on the OB Property.

B. Evidence of Financing

Within the time set forth in the applicable Schedule of Performance, Developer, at its cost, shall provide the Deputy City Manager with a schedule of proposed sources of funding for, and uses of funds and financial pro forma for, the development of the Property. In addition, during the term of this Agreement, Developer shall promptly provide the City Manager with copies of any applications for funding or other funding requests submitted by Developer to finance the development of the Property, and any response documentation received in connection with such submittals. Notwithstanding the foregoing, however, Developer shall not be required to obtain written commitments for any such financing during the term of this Agreement; the Parties anticipate that this subject will be dealt with in the AHA.

C. <u>Development Plans, Entitlements, and CEQA Review</u>

The Parties acknowledge that Developer has submitted to the City a, project description for the 28th Street Property (the "Site Plan") which is attached hereto as Exhibit D. City and Developer acknowledge that during the Negotiation Period, a Site Plan will be refined, based on discussions and meetings with City representatives and the activities to be conducted by Developer pursuant to this Agreement. Concurrently with such refinement, and in accordance with the timeframes set forth in the Schedule of Performance, Developer shall commence processing any entitlements necessary for development of the Property (collectively, the "Entitlements"), and shall furnish such information to City regarding a Site Plan as may be required by City to perform an environmental review for an AHA, the Entitlements, and any permits for the development of the 28th Street Property or alternative site required pursuant to the California Environmental Quality Act ("CEQA"). All fees and expenses for engineers, architects, financial consultants, legal, planning or other consultants retained by Developer to perform Developer's obligations set forth in this Agreement shall be the sole responsibility of Developer. City shall not be obligated to pay or reimburse any such fees and expenses incurred by Developer whether or not this Agreement is eventually terminated or extended, or whether or not an AHA is entered into between City and Developer in the future. All costs associated with any formal submittals and all costs associated with the preparation of environmental documents under CEQA shall be borne by Developer. Nothing herein reduces or eliminates any requirements of City or any other governmental entity with jurisdiction over the Property with respect to development of the Property.

D. Developer's Findings and Reports to City Manager

Developer, at its cost, shall, at the request of the City Manager, make periodic oral progress reports on all matters related to the Project and all studies being made related to Developer's acquisition and development of the Property, to the extent that they do not include confidential matters. Developer, at its cost, shall provide qualified representatives to participate in workshops, meetings, or presentations concerning the Property as reasonably required by the City Manager.

E. Restrictions Against Change In Ownership, Management And Control of Developer and Assignment of Agreement

- The qualifications and identity of Developer and its principals are of particular concern to the City. It is because of these qualifications and identity that City has entered into this Agreement with Developer. Except as provided below, during the Negotiation Period, no voluntary or involuntary successor-in-interest of Developer shall acquire any rights or powers under this Agreement. Developer shall not assign or transfer all or any part of this Agreement or any rights in or under this Agreement, without the prior written approval of the City Manager, which approval may be given or withheld in the City Manager's sole and absolute discretion. Any assignment or transfer of an interest, whether voluntary or involuntary, by Developer that has not been approved in writing by the City Manager prior to the time of such assignment or transfer shall be deemed a material breach of this Agreement by Developer which shall entitle City to terminate this Agreement, without liability, by sending written notice of termination to Developer, referencing this Paragraph F. Notwithstanding the foregoing, Developer shall be permitted to assign its rights under this Agreement to a limited partnership, the general partner of which is either (i) Developer, or (ii) an entity owned by Developer and over which Developer has managerial control, provided Developer and the proposed assignee execute an assignment and assumption agreement in a form approved by the Signal Hill City Attorney, pursuant to which the proposed assignee assumes all of Developer's obligations hereunder.
- 2. Developer shall give prompt written notice to the City Manager of any and all changes whatsoever in the identity of the business entities or individuals in control of Developer of which information Developer or any of its members, partners or officers are notified or may otherwise have knowledge or information. Failure of Developer to so notify the City Manager in writing within five (5) business days of such changes or obtaining such knowledge shall constitute a material breach by Developer of this Agreement and City may terminate this Agreement, without liability to City, by sending written notice of termination to Developer, referencing this Paragraph F.

F. Acknowledgments and Reservations

- 1. If this Agreement expires or is terminated for any reason, or a future AHA is not executed by both City and Developer for any reason, neither City nor Developer shall be under any further obligation to each other regarding the disposition of the Property or the development thereof.
- 2. Developer acknowledges and agrees that no provision of this Agreement shall be deemed to be an offer or proposal by City to Developer, nor an acceptance by City of any offer or proposal from Developer, for City to provide any financial or other assistance to Developer for development of the Property. The Parties anticipate that any such financial commitments will be contained in the AHA.

G. Developer Financial Disclosures

City reserves the right to obtain further information, data, and commitments to ascertain the ability and capacity of Developer to develop the Property. Developer acknowledges that it

may be requested to make certain confidential financial disclosures to City, its staff or legal counsel, as part of the financial due diligence investigations of City relating to the potential disposition of the Property and its development. City and Developer recognize that such financial disclosures may contain sensitive information relating to other business transactions of Developer, that the disclosure of such information to third parties could impose commercially unreasonable and/or anti-competitive burdens on Developer and, correspondingly, diminish the value or fiscal benefit that may accrue to City upon the disposition of the Property and development thereof by Developer, if a future AHA is entered into between City and Developer. Accordingly, City agrees to maintain the confidentiality of any business records of Developer disclosed to City, except as the City Attorney reasonably determines must be disclosed pursuant to the California Public Records Act or other applicable law. The defense of any action seeking disclosure of protected business records shall be at Developer's expense and handled by legal counsel selected by Developer and reasonably acceptable to the Signal Hill City Attorney.

H. Nondiscrimination

In undertaking its obligations under this Agreement, Developer covenants by and for itself and its representatives, officers, administrators, and assigns, and all persons claiming under or through them, that there shall be no discrimination against or segregation of, any person or group of persons on account of any basis listed in subdivision (a) or (d) of Section 12955 of the Government Code as those bases are defined in Sections 12926, 12926.1, subdivision (m) and paragraph (1) of subdivision (p) of Section 12955, and Section 12955.2 of the Government Code, nor shall Developer or any person claiming under or through Developer, establish or permit any practice or practices of discrimination or segregation with reference to the selection, location, number, use or occupancy of tenants, lessees, subtenants, sublessees, or vendees.

IV. REMEDIES

A. Default and Breach

- 1. Failure or delay by either Party to perform any material term or provision of this Agreement shall constitute a "default" under this Agreement. Subject to the effect of applicable force majeure provisions of Section VI, Paragraph K, if the Party who is claimed to be in default by the other Party commences to cure, correct, or remedy the default within fifteen (15) calendar days after receipt of written notice specifying such default and diligently completes such cure, correction or remedy within fifteen (15) calendar days after the expiration of the initial fifteen (15) day period (for a total of thirty (30) calendar days to cure the default), such Party shall not be in default under this Agreement. In no event shall any time to cure, correct or remedy a default extend the Negotiation Period.
- 2. The Party claiming that a default has occurred shall give written notice of default to the Party claimed to be in default, describing the alleged default with reasonable specificity. Delay in giving such notice shall not constitute a waiver of any default nor shall it change the time of default. However, the injured Party shall have no right to exercise any remedy permitted for a "breach" (as defined below) under this Agreement, without first delivering written notice of the default.

- 3. Any failure or delay by a Party in asserting any of its rights or remedies as to any default shall not operate as a waiver of any default or of any rights or remedies associated with a default. Except with respect to rights and remedies expressly declared to be exclusive in this Agreement, the rights and remedies of the Parties are cumulative and the exercise by either Party of one or more of such rights or remedies shall not preclude the exercise by such Party, at the same or different times, of any other rights or remedies for the same default or any other default by the other Party.
- 4. Subject to applicable force majeure provisions of this Agreement, if a Party in default fails either (i) to commence to cure, correct or remedy the default within fifteen (15) calendar days following written notice of such default, or (ii) to complete such cure, correction or remedy within fifteen (15) calendar days after the expiration of the initial fifteen (15) day period (for a total of thirty (30) calendar days to cure the default), a "breach" of this Agreement by the defaulting Party shall be deemed to have occurred. In no event shall City's disapproval or conditional approval of the Site Plan, the AHA, any CEQA review, or any other matters that require City's approval pursuant to this Agreement or applicable law constitute a default or breach under this Agreement by City.

B. Remedies for Breach of Agreement.

In the event of an uncured default under this Agreement, the sole remedy of the non-defaulting Party shall be to terminate this Agreement. Following the termination of this Agreement, neither Party shall have any further rights, remedies, or obligations under this Agreement, except as specifically set forth herein. Neither Party shall have any liability to the other for monetary damages for the breach of this Agreement, or failure to reach agreement on an AHA, and each Party hereby waives and releases any such rights or claims it may otherwise have at law or at equity. The Parties' rights and obligations under this Paragraph B shall survive the expiration or termination of this Agreement.

V. <u>INDEMNIFICATION, RIGHT OF ENTRY, INSURANCE, AND OTHER ISSUES</u>

A. Indemnification

Developer shall defend, indemnify and hold harmless the City and its officers, officials, members, employees, agents, representatives, and volunteers (when acting in an official capacity), from and against all damages and liability, including but not limited to any and all claims, demands, expenses, fees, costs, liabilities, suits, causes of action, litigation, attorney's fees, and expert witness fees (all of the foregoing, collectively, "*Claims*") arising from or related to the performance or nonperformance by Developer or its principals, directors, managers, shareholders, partners, employees, agents, or representatives in connection with this Agreement, including but not limited to Developer's investigation of the Property. Notwithstanding the foregoing, Developer shall not be responsible for any damages or liability to the extent caused by the negligence or willful misconduct of City or any of its officers, officials, members, employees, agents, representatives, or volunteers acting in an official capacity. This indemnity shall survive the termination of this Agreement.

B. Insurance

- 1. Within ten (10) days of the Effective Date of this Agreement, without limiting Developer's indemnification obligations as set forth in this Agreement, Developer shall procure and maintain, at its sole cost and expense, the following policies of insurance:
- a. Commercial General Liability insurance written on a per occurrence basis in an amount not less than \$1,000,000 per occurrence.
- b. Business Auto Coverage written on a per accident basis in an amount not less than \$1,000,000 per accident. If Developer or Developer's employees use personal autos in connection with the performance of work under this Agreement, Developer shall provide evidence of personal auto liability coverage for each such person or of evidence of such coverage or of reasonably similar coverage under any umbrella insurance policy maintained by Developer.
- c. If applicable, Worker's Compensation insurance providing statutory benefits as required by California law.
- 2. All of the insurance policies required hereunder, except the worker's compensation insurance, shall comply with the following requirements:
- a. All insurance shall be written by insurers that are admitted and licensed to do business in the State of California and with A.M. Bests rating of A- or better and a minimum financial size VII.
- b. The policies shall be endorsed to name as additional insureds the City and its officers, officials, members, employees, and agents.
- c. All of Developer's insurance: (a) shall contain no special limitations on the scope of protection afforded to the additional insureds; and (b) shall be primary insurance with regard to additional insureds and any insurance or self-insurance maintained by the additional insureds or any of them shall be in excess of Developer's insurance and shall not contribute with it.
- d. The policies shall be "occurrence" rather than "claims made" insurance.
- e. The policies shall apply separately to each insured against whom a claim is made or suit is brought, except with respect to the limits of the insurer's liability.
- f. The policies shall prohibit Developer from waiving the right of subrogation prior to a loss.
- g. The policies shall not contain any provision or definition that would serve to eliminate so-called "third party action over" claims, including any exclusion for bodily injury to an employee of the insured.

- 3. Developer shall provide the City Manager with certificates of insurance evidencing the above insurance coverages and said certificates of insurance have been reasonably approved by City. In the event any of said policies of insurance are reduced in limits or cancelled for any reason, Developer shall, prior to the cancellation date, submit new evidence of insurance, in conformance with this Paragraph B.
- 4. The provisions of any workers' compensation or similar act shall not limit the obligations of Developer under this Agreement. Developer expressly agrees not to use any statutory immunity defenses under such laws with respect to City or its officers, officials, members, employees, agents, representatives, or volunteers acting in an official capacity.
- 5. Developer agrees to provide immediate notice to City of any claim or loss against Developer arising out of any acts or omissions of Developer under this Agreement. City assumes no obligation or liability by such notice, but has the right to monitor the handling of any such claim or claims if they are likely to involve the City or any officer, official, member, employee, agent, or representative of City acting in an official capacity.

VI. MISCELLANEOUS

A. <u>Compliance With Law</u>

Developer acknowledges that any future AHA, if approved by City, will require Developer (among other things) to carry out the development of the real property subject thereto in conformity with all applicable laws, including all applicable building, planning and zoning laws, environmental laws, safety laws, and, if applicable, federal and state labor and wage laws including, but not limited to, any prevailing wage requirements pursuant to California Labor Code section 1720 *et seq*.

B. Third-Party Beneficiaries

None of the terms or provisions of this Agreement are intended to benefit any person or entity other than City or Developer. No affiliate or joint venturer or partner of Developer has any rights pursuant to this Agreement.

C. No Broker or Finder

Developer shall indemnify, defend, and hold harmless City from and against any claim or lawsuit (including reasonable attorneys' fees and costs and all costs of suit, expert witness fees, costs on appeal, and for discovery) for the payment of any real estate commissions or finder's or broker's fees arising out of this Agreement.

D. Governing Law; Venue; Attorneys' Fees

City and Developer agree that this Agreement shall be governed by, interpreted under, and construed and enforced in accordance with, the internal laws of the State of California without application of principles of conflicts of law. City and Developer acknowledge and agree that this Agreement was negotiated and entered into in the City of Signal Hill, California. Any legal action brought under this Agreement must be instituted in the Superior Court of the County of Los

Angeles, or in the Federal District Court of the applicable federal district of California. In the event of any litigation between the Parties, the prevailing Party shall be entitled to receive, in addition to the relief granted, its reasonable attorneys' fees and costs and such other costs incurred in investigating the action and prosecuting the same, including costs for expert witnesses, costs on appeal, and for discovery.

E. Partial Invalidity

If any term or provision or portion thereof of this Agreement or the application thereof to any person or circumstance shall, to any extent, be invalid or unenforceable, the remainder of this Agreement, or the application of such term or provision or portion thereof to persons or circumstances other than those as to which it is held invalid or unenforceable, shall not be affected thereby, and each such term and provision of this Agreement shall be valid and enforced to the fullest extent permitted by law.

F. Waivers

No waiver of any breach of any covenant or provision contained in this Agreement shall be deemed a waiver of any preceding or succeeding breach of such provision, or of any other covenant or provision contained in this Agreement. Unless required by the force majeure provisions of this Agreement, no extension of the time for performance of any obligation or act or any waiver of any provision of this Agreement shall be enforceable against City or Developer, unless made in writing and executed by both City and Developer.

G. Notices.

All notices under this Agreement shall be delivered by personal delivery, by a reputable same-day or overnight courier service that provides a receipt with the date and time of delivery, or by mailing in the U.S. mail by prepaid certified mail. Notices shall be directed to the respective Parties as follows:

If to City: City of Signal Hill

Attn: Carlo Tomaino, City Manager

2175 Cherry Ave Signal Hill, CA 90755

If to Developer: National Community Renaissance of California

Attn: Michael Ruane, President 9692 Haven Avenue, Suite 100 Rancho Cucamonga, CA 91730

A Party may change the address for delivery of notices to it as such Party may from time to time designate in writing to the other Party by a written notice conforming to the requirements of this section. Notices delivered by personal delivery, or same-day or overnight courier service shall be effective upon receipt (provided that any notices received after 5:00 p.m. on a business day or on a holiday or a weekend shall not be deemed received until 9:00 a.m. the next business day). Notices delivered by mail shall be effective as of noon on the second business day following deposit with the United States Postal Service.

H. <u>Calendar Days and Business Days</u>

As used herein, the term "days" shall mean calendar days unless the term "business days" is used. As used herein, a "business day" shall mean a day that Signal Hill City Hall is open for business to the general public. Developer acknowledges that Signal Hill City Hall is closed for holidays designated by the State of California or by ordinance or resolution of the City Council of the City. If the date on which City or Developer are required to take any action pursuant to the terms of this Agreement is not a business day, the action shall be taken on the next succeeding business day.

I. Construction

Headings at the beginning of each section and subsection of this Agreement are solely for the convenience of reference of City and Developer and are not a part of this Agreement. Whenever required by the context of this Agreement, the singular shall include the plural and the masculine shall include the feminine and vice versa. This Agreement shall not be construed as if it had been prepared by one or the other of City or Developer but rather as if both City and Developer prepared this Agreement. Unless otherwise indicated, all references to sections are to this Agreement. If any exhibits are referred to in this Agreement, such exhibits are either attached to this Agreement or incorporated into this Agreement by reference.

J. Nonliability of City Officials, Officers, and Employees

No officer, official, member, employee, agent, representative, or volunteer (when acting in an official capacity) of the City shall be personally liable to Developer, or any successors in interest, in the event of any default or breach by City of this Agreement, or for any amount which may become due to Developer or to any successors under this Agreement, or for a breach by City of any obligation of the terms of this Agreement.

K. Enforced Delay; Extension of Times of Performance

In addition to specific provisions of this Agreement, performance by either Party (who is not then otherwise in material default) shall not be deemed to be in default where delays or defaults are due to war, insurrection, strikes, lock-outs, riots, floods, earthquakes, fires, casualties, supernatural causes, acts of the public enemy, terrorism, epidemics, quarantine restrictions, freight embargoes, lack of transportation, governmental restrictions or priority, litigation, unusually severe weather, inability to secure necessary labor, materials or tools, delays of any contractor, subcontractor or supplies, acts of the other Party, acts or failure to act of City or any other public or governmental agency or entity, including, without limitation, unreasonable delays in the processing and issuance of required permits for a development project required by Developer (except that any act or failure to act of City shall not excuse performance by City) or any other causes beyond the reasonable control or without the fault of the Party claiming an extension of time to perform, for up to a maximum cumulative period of ninety (90) days. Notwithstanding the foregoing, inability to secure satisfactory financing, tenant or manufacturer commitments, or market and economic conditions shall not entitle Developer to an extension of time to perform. An extension of time for any such cause shall be for the period of the enforced delay and shall commence to run from the time of the commencement of the cause, if notice by the Party claiming such extension is sent to the other Party within ten (10) days of knowledge of the commencement of the cause. In addition, times of performance under this Agreement may be extended by mutual written agreement by City and Developer.

L. <u>Time of the Essence</u>

Time is of the essence in this Agreement and of each and every term and provision hereof, it being understood that the Parties hereto have specifically negotiated the dates or time limits for the completion of each obligation herein.

M. Entire Agreement; Amendment.

This Agreement sets forth the entire agreement between the Parties with respect to the subject matter set forth herein and supersedes all prior discussions and negotiations between the Parties with respect thereto. No amendment to this Agreement shall be effective unless set forth in a writing signed by an authorized signatory of each Party.

N. Counterparts.

This Agreement may be executed in any number of duplicate originals, all of which shall be of equal legal force and effect upon all of the Parties hereto signing this Agreement.

- P. <u>Warranty Against Payment of Consideration for Agreement</u>. The Developer warrants that it has not paid or given, and will not pay or give, any third party any money or other consideration for obtaining this Agreement. Third parties, for the purposes of this Section VI, P, shall not include persons to whom fees are paid for professional services, if rendered by attorneys, financial consultants, accountants, engineers, architects, brokers and other consultants, when such fees are considered necessary by the Developer.
- Q. <u>Press Releases.</u> The Developer agrees to obtain the approval of the City Manager or his or her designee or successor in function of any press releases Developer may propose relating to the sale or development of the Property or negotiation of an AHA with the City, prior to publication.

[Signature pages follow]

EXCLUSIVE NEGOTIATION AGREEMENT (National Core/Signal Hill)

IN WITNESS WHEREOF, the Parties have executed and entered into this Agreement as of the Effective Date.

DEVELOPER: NATIONAL COMMUNITY RENAISSANCE OF CALIFORNIA, a California non-profit public benefit corporation	
CITY:	
CITY OF SIGNAL HILL, a public body corporate and politic	
By: Name: Title:	

OF

EXHIBIT A AND A-1

LEGAL DESCRIPTION

[Attached.]

EXHIBIT A OB PROPERTY

EXHIBIT A-1 28TH ST PROPERTY

EXHIBIT B

SCHEDULE OF PERFORMANCE – ORANGE BLUFF

Effective Date is November 15, 2025

	OF PERFORMANCE	TIME FOR PERFORMANCE
1.	Conduct due diligence to determine feasibility of development.	By October 15, 2026.
2.	Establish site control with Signal Hill Petroleum.	Within thirty (30) calendar days of completing due diligence. (<i>November 15, 2026</i>)
3.	Refine and present to HA and City staff, for review, the following for each site: (a) Site Plan. A conceptual development site plan for each proposed Projects that describes and depicts: (1) the location and orientation of proposed buildings; and (2) the architecture of the proposed buildings; and (3) floor plans including unit plans; (b) Financial Pro Forma. A preliminary financial pro forma for each Project that includes cost financing (sources and uses), development costs, income, operating expenses and a cash flow analysis; (c) Project Schedule. A proposed time schedule from commencement to completion of the Projects;	Within one hundred and eighty (180) calendar days of completing due diligence. (May 15, 2027)
4.	Conduct HA Board/City Council/Community workshop.	Within sixty (60) calendar days of submitting the refined development plan, Developer shall facilitate at least one workshop for the HA Board, City Council, and community in a format to be designed in concert with HA and City staff. (July 15, 2027)
5.	Negotiation of Affordable Housing Agreement.	Within ninety (60) calendar days of HA Board/City Council workshop, or as required for funding applications, whichever is first. (September 15, 2027)

EXHIBIT B-1

SCHEDULE OF PERFORMANCE-

28TH & WALNUT OR ALTERNATIVE SITE

Effective Date is November 15, 2025

ITEN	M OF PERFORMANCE	TIME FOR PERFORMANCE
1.	Conduct due diligence to determine feasibility of development.	By March 1, 2026.
2.	Refine and present to HA and City staff, for review, the following for each site: (a) Site Plan. A conceptual development site plan for each proposed Projects that describes and depicts: (1) the location and orientation of proposed buildings; and (2) the architecture of the proposed buildings; and (3) floor plans including unit plans; (b) Financial Pro Forma. A preliminary financial pro forma for each Project that include cost financing (sources and uses), development costs, income, operating expenses and a cash flow analysis; (c) Project Schedule. A proposed time schedule from commencement to completion of the Projects.	Within forty-five (45) calendar days of completing due diligence. (April 15, 2026)
3.	Conduct HA Board/City Council/Community workshop.	Within thirty (30) calendar days of submitting the refined development plan, Developer shall facilitate at least one workshop for the HA Board, City Council, and community in a format to be designed in concert with HA and City staff. (May 15, 2026)
4.	Negotiation of Affordable Housing Agreement.	Within sixty (60) calendar days of HA Board/City Council workshop or as required for funding applications, whichever is first. (July 15, 2026)

EXHIBIT C

Signal Hill Petroleum Consent and Acknowledgement

CONSENT AND ACKNOWLEDGEMENT

		_ for Signal Hill Petroleum consent to the
the City of Signal Hill and Nation	al Community Rena	e Exclusive Negotiation Agreement among issance of Southern California, pursuing and
housing project at the following le		ents for the development of an affordable
1		
2		
•	ance and to comple	cknowledge and agree to use best efforts to te the land transaction between Signal Hill ne set forth therein.
	Ву: _	
	Name: _	
	Title:	

EXHIBIT D PROJECT DESCRIPTION— 28TH STREET PROPERTY

PROJECT DESCRIPTION

The 28th & Walnut apartment home community will be a new construction located on a 1.3-acre property at the southwest corner of East 28th Street and Walnut Avenue in Signal Hill, CA. The project site will support a single 3-4-story residential building with approximately 60 units and a leasing and property management office, a 1,000 square foot community room and a private office for support services. A surface parking lot accommodates approximately 64 stalls. The project will include a total of 59 affordable apartment homes for individuals and families earning below 80% of the area median income (AMI) with a mix of one-, two-, and three-bedroom units. One (1) three-bedroom unit will be reserved for an onsite property manager and is not rent or occupancy restricted.